hat differ in shapes, sizes and height the facade would be a mess. Some spaces need some light while other can't have any. I would like to have full freedom of creation inside the building, to make it as functional as possible. Thats why i decided the parametric "skin" solution would be best. Since the location has industrial past (factories made of brick) i decided that brick would give interesting result.
I tried creating the definition on my own but since i lack skill in GH i got some problems (especially multiplication of bricks and the diffrence between each "level" (half a brick on y axis) caused problems for me.
I post my simple sketch explaining the idea of definition i would like to create (sorry about quality):
1 - Brep - I would like to use 25x12x6cm (classic brick) but as well experiment with diffrent shapes - like the one on the right with hole inside - that would give more light. Thats why i think the best solution would be using brep for this definition.
2- Multiplication - biggest problem for me - I don't know how tall the wall would be, what will be the final shape of Brep (brick) and that's why i would like to manipulate this with sliders as well. All the walls are flat (maybe it would be easier to use surface?). As i managed to multiply the bricks easy way i don't know how to gain control over height of the wall - for example that it is 30 bricks high, but has each second row moved on x axis by the distance of 1/2 brick. I tried using Series but with no success. Could you help me with that please?
3 - Rotation - i would like to use image sampler for that so i can "paint" where i want more sun and where i dont need it at all (black and white). The rotation has to be limited to 180 degrees as well. Obviously i didn't get here yet, but i never used image sampler so if you could give me some advice how to use component and how to create such images i would be really grateful.
4 - More of a concept thing - since the connection angles differ from 90 degrees i will have to figure out how to connect the parts of the wall at sides ;).
I would like to ask you for help with the defintion, since i am totally stuck at step 2. I post what i came up with so far. Thank you for your time and help!
PS. I post an image that is pretty similar to one of options i would like to check for my building.
…
ase of resource and energy consumption identify significant developments of our time. Against this background and in the context of sustainable fairness to future generations, there will be a greater focus on energy and ressource efficient building structures.
This interdisciplinary course aims to lay the foundations of a „force based design“ through theoretical input lectures and presentations. Varying examples will show that the efficiency of structures depends largely on the flow of forces within the structure. Possible optimisation strategies will be discussed in the light of material saving and their impact on architectural form.
This course will introduce you to the use of digital analysis and optimization tools. You will learn to deal with three-dimensional parametric software (Rhinoceros 3D, Grasshopper, Sofistik, Karamba, GeometryGym, Kangaroo).
Finally, the knowledge acquired will be applied and developed in designing a pedestrian bridge or a slender tower.
Participants will be able to recognize the effects of forces as design parameters. They will recognize the potential of building geometry in the context of architecture and resource-efficient designs.
Information » Application deadline 15 May » Course duration 18 - 30 August » Course language English » Target Groups Master students, graduates, doctoral candidates and young professionals » Requirements basic knowledge of 3D parametric software is recommended » Course fee 490 € (100 € discount for students and alumni) (290 € discount for students of the Bauhaus-Universität Weimar)
Lecturers » Prof. Dr.-Ing. Alexander Stahr - HTWK Leipzig » Dipl.-Ing. Christian Heidenreich - Bauhaus-Universität Weimar » B.Sc. Martin Dembski - Bauhaus-Universität Weimar
Guest Lecturers » Dipl. Eng. Arch. Simon Vogt - Transform Engineers, Hamburg » Dipl. Bauingenieur FH Nico-Ros-Zeile - ZPF Ingenieure, Basel (CH)…
mers considering extreme sports reject mainstream retailers and like to check out small stores rather of at chains plus malls. Several smaller retailers discuss trends in sports shoe sales. http://skateszone.com/
Though athletic shoes and sports stores and from doorways retailers have reported somewhat uptick in footwear sales due to the increase in extreme sports, the particular beneficiaries inside the trend are independent surf and skate niche stores.
Some West Coast surf and skate shops stated teenagers and even more youthful Generation Xers are not only rejecting traditional sports, but they're also shunning mainstream retailers and malls meant for smaller niche shops transporting hard-to-come-by brands.
Eddie Miyoshi, district manager at Atomic Garage, a 3-store chain situated in Gardena, Calif., stated the soaring recognition of skateboard footwear has boosted the retailer's total footwear business 20-thirty percent this year, rather of '95.
Skate footwear presently represent 80-90 % of Atomic Garage's shoe sales, while couple of years back, Dr. Martens and Timberland drove the retailer's footwear business.
Like many retailers, Miyoshi pointed to Airwalk since the trend's catalyst.
However, if Airwalk broadened its distribution to larger chains, which are frequently located in malls, only a few skate shoe customers adopted. Rather, many youthful males have switched for your skate shops for additional elusive brands like Etnies, Duffs, and Electricity Footwear by Circus. By refusing to market bigger retailers or sports stores, these brands are increasing their cachet among youthful consumers.
"Kids don't want stuff which have been within the shops,In . Miyoshi added.
Searching ahead, Miyoshi forecasted skate shoe sales will remain strong through spring '97 provided "the [hot] vendors don't auction other [non-particularly shop] retailers."
"Skaters and non-skaters are rebelling against mainstream retailers so on to surf and skate shops for many looks," echoed Mark Richards, co-online sources Val Surf, a 3-store chain situated in North Hollywood, Calif. Soaring sales of skate footwear have driven total footwear receipts up 25 percent this year rather of '95.
"The quantity of that increase might be connected while using exposure of maximum games? I am unsure. [Skate footwear] may also be actually the think about the moment,In . Richards acknowledged. And in relation to getting this right look, youthful customers can be very picky.
"Skateboard footwear is a huge category for people, but we're not able to own the brands, Etnies, Duffs, Electricity and Nice, simply because they won't sell us," stated Mark Anderson, buyer at Chick's Sports, a six-store chain in Covina, Calif. "We have people coming every single day requesting them." Consequently, skate footwear have consistently ongoing to obtain about 5 % of Chick's overall footwear business. http://skateszone.com/the-top-8-best-skateboards-for-beginners-reviews-2017/
Nonetheless, some outdoors, niche sports and sports retailers are noting the growing recognition and coverage of maximum sports will receive a modest impact on footwear sales. Trailrunning footwear and approach/outdoors crosstrainers will be the two groups benefiting the very best inside the recognition. Like the skate shoe business, some retailers realize that styling instead of function frequently drives sales of individuals footwear.
"At this time the merchandise is a lot more visual than function," stated Chet James, gm of Super Jock 'N Jill, Dallas, speaking about trailrunning footwear. Still, James noted the current hype over adventure sports helps draw more customer traffic. "The marketing campaigns and media help bring growing figures of people in, nonetheless they frequently occasions day an issue that increases results on their own account,Inch he conceded.
John Wilkinson, executive vp inside the 85-store chain Track 'N Trail, Eldorado Hillsides, Calif., stated the shop has "seen some activity in approach footwear," but he requested the amount of consumers depend in it commercially sport. And, instead of accelerating total footwear business, Wilkinson speculated elevated sales of approach footwear and trailrunners are gnawing away at traditional hiking shoe and boot volume.
But Dan Bazinet, president of Overland Exchanging, a 34-store chain situated in Westford, Mass., believes the company-new looks have breathed existence for the wilting hiking boot category. "[Approach-type footwear] don't represent the lion's participate the hiking market, nonetheless they have elevated the hiking business and provided us extra sales," Bazinet stated.
He designated Timberland's Treeline Series and Rockport's Leadville line as strong performers. Unsurprisingly, he noted the company-new looks are attractive to youthful consumer base than traditional hikers.
For that month of June, sales of men's hikers were up 49 percent at Overland, rather of June '95, while sales of women's hikers were up 17 % for that month. Bazinet also attributed elevated sales that shops walked inside the hiking business, departing that business for that specialists.
Some retailers draw a good example concerning the hiking boom of two yrs ago combined with the current extreme sport phenomenon. "Plenty of bigger chains will get a specific percent in the industry while [extreme] sports remain a fad because they are selling cost-point type gear," described Steven Carre, assistant hard goods buyer at Adventure 16, a six-store chain situated in Hillcrest.
"However individuals [true enthusiasts] will say `we need real gear' and may shown up at us. That will help us after a while. What Size Skateboard good for an 3 4 5 6 7 8 9 10 11 12 13 14 year old
…
, Engineer and Researcher from France with broad programming experience. He is the author of the City in 3D Rhinoceros plugin for creation of buildings according to geojson file and with real elevation. Guillaume already created a new component: "Address to Location". It enables getting latitude and longitude values for the given address:
2) Support of Bathymetry data: automatic creation of underwater (sea/river/lake floor) terrain. This feature is now available through new source_ input of the "Terrain generator" component. Here is an example of terrain of the Loihi underwater volcano, of the coast of Hawaii:
3) A new terrain source has been added: ALOS World 3D 30m. ALOS is a Japanese global terrain data. Gismo "Terrain Generator" component has been using SRTM 30m terrain data, which hasn't been global and was limited to -56 to +60 latitude range. With this addition, it is possible to switch between SRTM and ALOS World 3D 30m models with the use of source_ input.
4) 9 new components have been added:
"Address To Location" - finds latitude and longitude coordinates for the given address.
"XY To Location" - finds latitude and longitude coordinates for the given Rhino XY coordinates. "Location To XY" - vice versa from the previous component: finds Rhino XY coordinates for the given latitude longitude coordinates. "Z To Elevation" - finds elevation for particular Rhino point. "Rhino text to number" - convert numeric text from Rhino to grasshopper number. "Rhino unit to meters" - convert Rhino units to meters. "Deconstruct location" - deconstructs .epw location. "New Component Example" - this component explains how to make a new Gismo component, in case you are interested to make one. We welcome new developers, even if you contribute a single component to Gismo! "Support Gismo" - gives some suggestions on how to make Gismo better, how to improve it and support it.
5) Ladybug "Terrain Generator" component now supports all units, not only Meters. So any Gismo example file which uses this component, can now use Rhino units other than Meters as well. Thank you Antonello Di Nunzio for making this happen!!
Basically just forget about this yellow panel:
This panel is not valid anymore, so just use any unit you want.
6) A number of bugs have been fixed, reported in topics for the last couple of weeks. We would like to thank members in the community who invested their time in testing, finding these bugs and reporting them: Rafat Ahmed, Peter Zatko, Mathieu Venot, Abraham Yezioro, Rafael Alonso. Thank you guys!!! Apologies if we forgot to mention someone.
The version 0.0.2 can be downloaded from here:
https://github.com/stgeorges/gismo/zipball/master
And example files from here:
https://github.com/stgeorges/gismo/tree/master/examples
Any new suggestions, testing and bug reports are welcome!!…
Added by djordje to Gismo at 5:13pm on March 1, 2017
) Course Fee: Professional EUR 825,- (+VAT), Student EUR 415,- (+VAT)
Led by plug-in developer and structural engineer Clemens Preisinger, along with Zeynep Aksoz and Matthew Tam from the expert Karamba3D team, this three-day workshop will focus on methods of setting up structural systems in the parametric environment of Grasshopper. The participants will be guided through the basics of analyzing and interpreting structural models, to optimization processes, and how to integrate Karamba3D into C# scripts.
This workshop is aimed towards beginner to intermediate users of Karamba3D. However, advanced users are also encouraged to apply. It is open to both professional and academic users. For beginner users of Rhino and Grasshopper, there will be an optional introductory course one day before the Karamba3D course.
Karamba3D 1is a parametric structural engineering tool which provides accurate analysis of spatial trusses, frames, and shells. Karamba3D is fully embedded in the parametric design environment of Grasshopper, a plug-in for the 3D modeling tool Rhinoceros. This makes it easy to combine parameterized geometric models, finite element calculations, and optimization algorithms like Galapagos.
Course Outline
Introduction and presentation of project examples
Optimization of cross sections of line-based and surface-based elements
Geometric optimization
Topological optimization
Structural performance informed form finding
Understanding analysis algorithms embedded in Karamba3D and visualizing results
Complex workflow processes in Rhino, Grasshopper, and Karamba3D
Places are limited to a maximum of 10 participants with limited educational places. A minimum of 4 participants is required for the workshop to take place. The workshop will be canceled if this quota is not filled by October 28. The workshop will be taught in English.
Course Requirements
Basic Rhino and Grasshopper knowledge is recommended. An introductory course is offered.
No knowledge of Karamba3D is needed. Participants should bring their own laptops with Grasshopper and either Rhino 5 or Rhino 6 installed. You can download a 90-day trial version of Rhino. Karamba3D ½ year licenses for non-commercial use will be provided to all participants.
Please register here……
Added by Matthew Tam at 6:38am on September 13, 2019
curve or locus] of a segment AB, in English. The set of all the points from which a segment, AB, is seen under a fixed given angle.
When you construct l'arc capable —by using compass— you obviously need to find the centre of this arc. This can be easily done in GH in many ways by using some trigonometry (e.g. see previous —great— solutions). Whole circles instead of arcs provide supplementary isoptics —β-isoptic and (180º-β)-isoptic—. Coherent normals let you work in any plane.
Or you could just construct β-isoptics of AB by using tangent at A (or B). I mean [Arc SED] component.
If you want the true β-isoptic —the set of all the points— you should use {+β, -β} degrees (2 sides; 2 solutions; 2 arcs), but slider in [-180, +180] degrees provides full range of signed solutions. Orthoptic is provided by ±90º. Notice that ±180º isoptic is just AB segment itself, and 0º isoptic should be the segment outside AB —(-∞, A] U [B, +∞)—. [Radians] component is avoidable.
More compact versions can be achieved by using [F3] component. You can choose among different expressions the one you like the most as long as performs counter clockwise rotation of vector AB, by 180-β degrees, around A; or equivalent. [Panel] is totally avoidable.
Solutions in XY plane —projection; z = 0—, no matter A or B, are easy too. Just be sure about the curve you want to find the intersection with —Curve; your wall— being contained in XY plane.
A few self-explanatory examples showing features.
1 & 5 1st ver. (Supplementary isoptics) (ArcCapableTrigNormals_def_Bel.png)
2 & 6 2nd ver. (SED) (ArcCapableSED_def_Bel.png)
3 & 7 3rd ver. (SED + F3) (ArcCapableSEDF3_def_Bel.png)
4 & 8 4th ver. (SED + F3, Projection) (ArcCapableSEDProjInt_def_Bel.png)
If you want to be compact, 7 could be your best choice. If you prefer orientation robustness, 5. Etcetera.
I hope these versions will help you to compact/visualize; let me know any feedback.
Calculate where 2 points [A & B] meet at a specific angle is just find the geometrical locus called arco capaz in Spanish, arc capable in French (l'isoptique d'un segment de droite) or isoptic [curve or locus]
of a segment AB, in English. The set of all the points from which a segment,
AB, is seen under a fixed given angle.…
diseño, construcción y entendimiento de nuestro entorno.
BIM está poniendo a disposición de los diseñadores y gestores auténticas bases de datos que pueden generarse, conectarse y editarse de forma paramétrica, proporcionando una sólida capa de realidad a los ejercicios de diseño generativo y computación que son objeto de estudio en Algomad, el seminario que busca popularizar la programación y la parametrización en el diseño y en la experiencia de nuestro entorno construido.
Tras un paréntesis en 2015, Algomad vuelve con el objetivo de demostrar cómo una visión computacional del BIM es una oportunidad para mejorar la forma de trabajar de ingenieros, arquitectos, constructoras y operadores de edificios e infraestructuras, tendiendo un puente entre las técnicas de diseño digital más avanzadas y la realidad de la construcción.
Algomad 2016 tendrá lugar en el centro de Madrid, en IE School of Architecture and Design, IE University, los días 3, 4 y 5 de Noviembre de 2016 y comprenderá 4 talleres así como ponencias a cargo de expertos de primer nivel.
Estructura de Algomad 2016
Algomad 2016 se estructura en torno a tres áreas temáticas principales:
BIM, como la metodología total específica para el sector de la construcción.
Computación, englobando las aplicaciones de programación y parametrización al diseño de edificios e infraestructuras.
Realidad, como marco de trabajo, buscando siempre resolver problemas reales a través de los dos puntos anteriores.
Público objetivo
Arquitectos, arquitectos técnicos, ingenieros y en general académicos, estudiantes de últimos cursos y profesionales del mundo inmobiliario y de la construcción que compartan un interés por la digitalización de nuestro sector. Se espera un nivel mínimo en el uso de herramientas BIM y de parametrización. Algomad proporcionará formación adicional y gratuita en las herramientas básicas a emplear en los talleres para asegurar un correcto desempeño.…
reaky thing consisting from triangulated "modules" (i.e an assembly out of this, this and that) where the exterior edges ARE always under tension (= SS 304/316 cables OR nylon) and the interior ones MAY be under compression ( = steel, aluminum, wood, carbon) OR ... some of them ...may be under tension. Bastardized T trusses deviate a bit from theory ... but who cares? (not me anyway). T trusses have many variants (but as the greatest ever said: Less is More).
2. Large scale T for AEC is the art of pointless since it costs around the GNP of Nigeria. Here's some indicative components from a module of a multi adjustable TX system costing (the module) ~ the price of my Panigale (Google that):
The above is mailed to a friend who has MIT (yes, that MIT: the top dog) on sight ... therefor he needs some appropriate "credentials", he he.
3. The distance that separates the above with the demo TDT node provided is around 666.666 miles - but we don't care: we are after Art not some testimony to vanity.
4. On purpose I've used a smallish ring to give you a clear indication upon the constrain numero uno in truss design: CLASH matters.
5. You'll need:
(a) A decision related with the tensioners (classic Norseman + SS cables or nylon machined thingies?).
(b) A machinist who can do elementary stuff (like the adapters) and can weld this to that (the "ring" for instance). His abilities must be 1 in a scale of 100. If the fella has a computer (not a CRAY) and he knows what 3dPDF is (hmm) ... well ... use that way to communicate with him PRIOR designing anything: He must agree on the parts BEFORE the whole is attempted (as a design in GH or in some other app).
(c) A carpenter with a wood lathe for the obvious. BTW: BEFORE doing any TDT attempt > ask the carpenter about the available wood strut sizes. Against popular belief DO NOT varnish the wood (use exterior alkyd/oil stains from some top maker like the notorious US company PPG).
http://www.ppgpaints.com/products/paints-stains-data-sheets
(d) Good quality cigars (and espresso) plus some classic music (ZZTop, PFloyd, Cure, Stones, U2 etc etc) during the assembly.
(e) Faith to the Dark Side (see my avatar).
May the Force (the dark option) be with you.…
hacia donde crecerán las venas, y tenemos otro conjunto de puntos 'N' que son los que forman el patrón de venas.
1. Por cada 's' perteneciente a S, buscamos el 'n' perteneciente a N más cercano. Ese 'n' va a "moverse".
2. Por cada 'n' que se mueve, hacemos un vector dirigido a todos los 's' hacia los que se mueve.
3. Calculamos el vector medio de todos los vectores del paso 2, movemos 'n' con ese vector y lo añadimos a V.
4. Si algún 's' está muy cerca de algún 'n', ese 's' se elimina.
5. Se repite el proceso.
Esto es para formar venaciones abiertas sin autocrecimiento (como la siguiente imagen, hecho con Visual Basic).
Para las cerradas (las reticuladas que forman algo como células, como en la imagen tuya), el paso 1 y 4 son distintos y no sabría decirte cómo hacerlo. En ese pdf explica un método usando delaunay pero es muy lento, además gh no tiene ese algoritmo en 3d (entonces solo se podría hacer este patrón en 2d), por lo que estoy buscando otras vías, solo he logrado llegar a esto:
Es más complicado de lo que parece.
No obstante, si te conformas con menos, hay muchas formas de crear raíces y patrones similares, con SortestWalk, Anemone, etc... Hay ejemplos en este foro.
Si realmente quieres conseguir ese patrón, deberías aprender a programar porque para añadir distintos radios a las venas es necesario que las venas tengan topología y eso se complica demasiado desde gh. Nervous System para su "Hyphae" usó C++ con la librería CGAL, que es una muy poderosa librería de algoritmos de 3d.
…
d work exactly as the physical model. In the model, we have a curved surface which can be analysed into squares. These squares are filled with two kind of units which are connected with each other and create a grid that follows this curved surface.
We have managed to analyse this curved surface into a planar surface consisted of squares and we painted the squares with colours to represent the kind of unit that "fills" each square. So, now in rhino I have managed to build the curved surface that I want it to be filled with the two types of units.
I also have the planar surface built in Gh with the squares split into two lists, each one for each kind of unit. Because these units are mambranes, I used kangaroo to make them act like mambranes.
I hope I described the problem clearly. The point is to keep the dimensions of the units
the same and make it work in Kangaroo. Do you have anything in mind that I should look up or any advice ? Thank you in advance and i m sorry for the extended description.
*Pic 1: the curved surfaces that has to be filled with the units
*Pic 2: The binary system that shows which square is occupied by which unit
Blue=2 , Red=1, White= Blank
*Pic 3: unit 1
*Pic 4: unit 2
*Pic 5: a point of view of the physical model (not the final curve at the surface)
…