During processing some calculation with kangaroo I noticed that I have problem with my Computer
In case of a retractable roof, by dynamic relaxation it works in generally fine with few elements (e.g. only fabric between 2 radial cable). But if I try to simulate a completely whole structure like picture below + if I trying to model a material that has more degree subdivision + adding diagonals (as resistance to shear deformation which causes the creases like your example of tablecloth drop), then I have huge problem to deal with my hardware.
(I am using Intel Xeon 4 cores, 2.93GHz with 4GB RAM and running in Win7 in 64 bit but with Rhino 32 bit.)
(Roof geometry can be completely asymmetrical, so let’s assuming that we can’t array the resulting geometries!)
There are some discussions about how to increase the processing power of grasshopper:
As I read that the GH is single threaded, we could over clocking the CPU + give lot of RAM.
I am curious if Kangaroo and other Apps are following the same performance-rule (single thread) like Rhino/ G.H? And what would be the key-feature to increase the power of Rhino/GH/Kangaroo in order to process the case I mentioned before (completely retractable roof)?
- Which level of CPU? Or constraint of CPU over clocking when necessary and capacity of RAM)
- How fine tuning my PC for best performance? (Parallel computing, c-flex…)
- is GPU a matter? (E.g. in Animation standard: Nvidia CUDA Quadro 4000+)
Kangaroo
3021 members
Description
THIS FORUM IS NO LONGER ACTIVE. PLEASE POST ANY NEW QUESTIONS OR DISCUSSION ON:
https://discourse.mcneel.com/c/grasshopper/kangaroo
The discussions here are preserved for reference, but new questions posted here are likely to go unanswered.
Kangaroo is a Live Physics engine for interactive simulation, optimization and form-finding directly within Grasshopper.
increase the processing power of Kangaroo/GH
by Jon
Jun 27, 2014
Dear Daniel,
During processing some calculation with kangaroo I noticed that I have problem with my Computer
In case of a retractable roof, by dynamic relaxation it works in generally fine with few elements (e.g. only fabric between 2 radial cable). But if I try to simulate a completely whole structure like picture below + if I trying to model a material that has more degree subdivision + adding diagonals (as resistance to shear deformation which causes the creases like your example of tablecloth drop), then I have huge problem to deal with my hardware.
(I am using Intel Xeon 4 cores, 2.93GHz with 4GB RAM and running in Win7 in 64 bit but with Rhino 32 bit.)
(Roof geometry can be completely asymmetrical, so let’s assuming that we can’t array the resulting geometries!)
There are some discussions about how to increase the processing power of grasshopper:
http://www.grasshopper3d.com/forum/topics/is-there-a-plan-to-suppor...
http://www.grasshopper3d.com/forum/topics/performance-of-grasshopper?
http://www.grasshopper3d.com/forum/topics/grasshopper-cpu-optimization
As I read that the GH is single threaded, we could over clocking the CPU + give lot of RAM.
I am curious if Kangaroo and other Apps are following the same performance-rule (single thread) like Rhino/ G.H? And what would be the key-feature to increase the power of Rhino/GH/Kangaroo in order to process the case I mentioned before (completely retractable roof)?
- Which level of CPU? Or constraint of CPU over clocking when necessary and capacity of RAM)
- How fine tuning my PC for best performance? (Parallel computing, c-flex…)
- is GPU a matter? (E.g. in Animation standard: Nvidia CUDA Quadro 4000+)
Or probably just a suggestion of workstation ;-)
Sorry I am not expertise of computer technical…
Thanks!