by gotjosh
Aug 7, 2011
Inspired by http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat2.html
creating:
via:
goldenAngle.1000seeds.fibonnacci.gh
update:
goldenAngle.1000seeds.fibonnacci.03.gh
all angles between one sphere and the next are:
137.5077641
the sequence goes like this for angles from the X vector:
Perfect Distribution, Zero repetition - thanks to the most irrational number of them all: phi
137.5077641 -> 84.9844722 -> 52.5232923 -> 169.9689444 -> 32.461185 -> 105.0465846 -> 117.4456527 -> 20.0621128 -> 157.5698769 -> 64.92235910 -> 72.58540511 -> 149.90683112 -> 12.39906713 -> 125.10869714 -> 97.38353915 -> 40.12422516 -> 177.63198917 -> 44.86024718 -> 92.64751719 -> 129.84471920 -> 7.66304521 -> 145.17080922 -> 77.32142723 -> 60.18633724 -> 162.30589925 -> 24.79813526 -> 112.70962927 -> 109.78260728 -> 27.72515729 -> 165.23292230 -> 57.25931431 -> 80.2484532 -> 142.24378633 -> 4.73602234 -> 132.77174235 -> 89.72049436 -> 47.7872737 -> 174.70496638 -> 37.19720239 -> 100.31056240 -> 122.18167441 -> 15.3260942 -> 152.83385443 -> 69.65838244 -> 67.84938245 -> 154.64285446 -> 17.1350947 -> 120.37267448 -> 102.11956249 -> 35.38820350 -> 172.89596751 -> 49.59626952 -> 87.91149553 -> 134.58074154 -> 2.92702355 -> 140.43478756 -> 82.05744957 -> 55.45031558 -> 167.04192159 -> 29.53415760 -> 107.97360761 -> 114.51862962 -> 22.98913563 -> 160.49689964 -> 61.99533765 -> 75.51242766 -> 146.97980967 -> 9.47204568 -> 128.03571969 -> 94.45651670 -> 43.05124871 -> 179.44098872 -> 41.93322473 -> 95.5745474 -> 126.91769675 -> 10.59006876 -> 148.09783277 -> 74.39440478 -> 63.1133679 -> 159.37887680 -> 21.87111281 -> 115.63665282 -> 106.85558483 -> 30.6521884 -> 168.15994485 -> 54.33229286 -> 83.17547287 -> 139.31676488 -> 1.80989 -> 135.69876590 -> 86.79347191 -> 50.71429392 -> 171.77794393 -> 34.27017994 -> 103.23758595 -> 119.25465196 -> 18.25311397 -> 155.76087798 -> 66.73135999 -> 70.776405100 -> 151.715831101 -> 14.208067102 -> 123.299697103 -> 99.192539104 -> 38.315225105 -> 175.822989106 -> 46.669247107 -> 90.838517108 -> 131.653719109 -> 5.854046110 -> 143.36181111 -> 79.130426112 -> 58.377338113 -> 164.114898114 -> 26.607134115 -> 110.90063116 -> 111.591606117 -> 25.916158118 -> 163.423922119 -> 59.068314120 -> 78.43945121 -> 144.052786122 -> 6.545022123 -> 130.962742124 -> 91.529494125 -> 45.97827126 -> 176.513966127 -> 39.006202128 -> 98.501562129 -> 123.990673130 -> 13.517091131 -> 151.024855132 -> 71.467381133 -> 66.040383134 -> 156.451853135 -> 18.944089136 -> 118.563675137 -> 103.928561138 -> 33.579203139 -> 171.086967140 -> 51.405269141 -> 86.102495142 -> 136.389741143 -> 1.118023144 -> 138.625787145 -> 83.866449146 -> 53.641315147 -> 168.850921148 -> 31.343157149 -> 106.164608150 -> 116.327628151 -> 21.180136152 -> 158.6879153 -> 63.804336154 -> 73.703428155 -> 148.788808156 -> 11.281044157 -> 126.22672158 -> 96.265516159 -> 41.242248160 -> 178.750012161 -> 43.74222416
Aug 8, 2011
Cancel
TheChosenOne
Aug 7, 2011
gotjosh
Aug 7, 2011
gotjosh
all angles between one sphere and the next are:
137.5077641
the sequence goes like this for angles from the X vector:
Perfect Distribution, Zero repetition - thanks to the most irrational number of them all: phi
137.5077641 -> 84.9844722 -> 52.5232923 -> 169.9689444 -> 32.461185 -> 105.0465846 -> 117.4456527 -> 20.0621128 -> 157.5698769 -> 64.92235910 -> 72.58540511 -> 149.90683112 -> 12.39906713 -> 125.10869714 -> 97.38353915 -> 40.12422516 -> 177.63198917 -> 44.86024718 -> 92.64751719 -> 129.84471920 -> 7.66304521 -> 145.17080922 -> 77.32142723 -> 60.18633724 -> 162.30589925 -> 24.79813526 -> 112.70962927 -> 109.78260728 -> 27.72515729 -> 165.23292230 -> 57.25931431 -> 80.2484532 -> 142.24378633 -> 4.73602234 -> 132.77174235 -> 89.72049436 -> 47.7872737 -> 174.70496638 -> 37.19720239 -> 100.31056240 -> 122.18167441 -> 15.3260942 -> 152.83385443 -> 69.65838244 -> 67.84938245 -> 154.64285446 -> 17.1350947 -> 120.37267448 -> 102.11956249 -> 35.38820350 -> 172.89596751 -> 49.59626952 -> 87.91149553 -> 134.58074154 -> 2.92702355 -> 140.43478756 -> 82.05744957 -> 55.45031558 -> 167.04192159 -> 29.53415760 -> 107.97360761 -> 114.51862962 -> 22.98913563 -> 160.49689964 -> 61.99533765 -> 75.51242766 -> 146.97980967 -> 9.47204568 -> 128.03571969 -> 94.45651670 -> 43.05124871 -> 179.44098872 -> 41.93322473 -> 95.5745474 -> 126.91769675 -> 10.59006876 -> 148.09783277 -> 74.39440478 -> 63.1133679 -> 159.37887680 -> 21.87111281 -> 115.63665282 -> 106.85558483 -> 30.6521884 -> 168.15994485 -> 54.33229286 -> 83.17547287 -> 139.31676488 -> 1.80989 -> 135.69876590 -> 86.79347191 -> 50.71429392 -> 171.77794393 -> 34.27017994 -> 103.23758595 -> 119.25465196 -> 18.25311397 -> 155.76087798 -> 66.73135999 -> 70.776405100 -> 151.715831101 -> 14.208067102 -> 123.299697103 -> 99.192539104 -> 38.315225105 -> 175.822989106 -> 46.669247107 -> 90.838517108 -> 131.653719109 -> 5.854046110 -> 143.36181111 -> 79.130426112 -> 58.377338113 -> 164.114898114 -> 26.607134115 -> 110.90063116 -> 111.591606117 -> 25.916158118 -> 163.423922119 -> 59.068314120 -> 78.43945121 -> 144.052786122 -> 6.545022123 -> 130.962742124 -> 91.529494125 -> 45.97827126 -> 176.513966127 -> 39.006202128 -> 98.501562129 -> 123.990673130 -> 13.517091131 -> 151.024855132 -> 71.467381133 -> 66.040383134 -> 156.451853135 -> 18.944089136 -> 118.563675137 -> 103.928561138 -> 33.579203139 -> 171.086967140 -> 51.405269141 -> 86.102495142 -> 136.389741143 -> 1.118023144 -> 138.625787145 -> 83.866449146 -> 53.641315147 -> 168.850921148 -> 31.343157149 -> 106.164608150 -> 116.327628151 -> 21.180136152 -> 158.6879153 -> 63.804336154 -> 73.703428155 -> 148.788808156 -> 11.281044157 -> 126.22672158 -> 96.265516159 -> 41.242248160 -> 178.750012161 -> 43.74222416
Aug 8, 2011
gotjosh
Aug 8, 2011