algorithmic modeling for Rhino
MArch UDII_Bartlett UCL Computational Course _ Associative modelling Sessions // Attractor Logics.3_Research
Tags:
Comment
Hi Iker -- Have you had any luck in resolving the script? If at all possible would you be able to share your script as I am very interested in how you worked it out and how I could apply it to my agent algorithm. Thank you!!
Daniel Piker last blog post reminded me of the reason of the non-manifolds.
It's because of the use of cubes. The space has to be packed in a way where coincident edges are shared by only 3 solids (like a voronoi diagram).
Rather than using a second attractor what I did is add the boundary faces of the non smoothed out mesh to the smooth out mesh. This could be done more than once to add additional rings of faces to smooth out the transition.
I noticed the non-manifold problem, same thing happens in my definition.
Ups!!!! forgot to mention that I am still trying to reduce the computing time as it still a bit heavy to re-fresh and also some times the final mesh has few faces that are non-manifold due to original mesh derived from the voxels... as soon as I find a way around I will share the def.
b
Vicente let me know when are you around and we could go for a beer!
best
Hi Vicente,
Great solution with native components!, but it is slightly different approach to mine, I use one attractor to cull the near by boxes withing the range to dynamically define the the base mesh and a the second attractor is the most important one, I use the same Curve but with this attractor i define the area for the increment of resolution, I defined that way so I could control the edges of the shape decide between a sharper or smoother edge when the increment of resolution occurs. Also my approach allows to dynamical re-adjust to different levels of higher resolution from 1 to 2 to 3 while the boundary condition retopologize itself to match the specified resolution.
Also at first I wanted to use only native component but the computing time was getting to high so I switch to weaverbird to reduce the number of stored data.
It's possible, but you can increase the iterations of the smooth mesh component. The curve is also placed lower creating sharper angles.
Nevertheless they are done differently. I think the original first uses laplacian smoothing to smooth the boundary of jagged box faces, then uses catmull clark to smooth out the seams.
I didn't use catmull clark (because trying to implement it using only stardard components will result in me shooting myself in the face) so what I did is first pull the vertices to a fixed distance from the curve and then used the smooth mesh component for smoothing the seams.
Nice one Vicente. But, is it me or your solution is not so smooth in some parts as Iker is?
Very nice. I had a go at it using standard components (no plugins or scripting...why do I do this to myself...). Definition here.
Iker, I'm every week at the Bartlett now, hope to see you around.
© 2019 Created by Scott Davidson. Powered by
You need to be a member of Grasshopper to add comments!
Join Grasshopper