ies and ideas (in this case agent-based modelling) simply because they are the new cool thing to do and, if we think carefully about how the integration of agent-based modeling will improve the accuracy and usefulness of our models, we are more likely to make lasting contributions through their integration.
For example, it seems vital to me that such agent-based models be grounded in some clear quantifiable observations of human behavior in real buildings as opposed to relying on our own coefficients to represent how valuable we think certain things are to the occupants. I will give an example of two agent-based ideas that I have had - one of which has turned out to seem much more valuable in the long-run because of it's grounding in real-world data and I plan to implement soon.
To start with the more valuable example, ever since I read this awesome book on adaptive thermal comfort (https://books.google.com/books?id=vE7FBQAAQBAJ&printsec=frontcover&dq=adaptive+thermal+comfort&hl=en&sa=X&ved=0ahUKEwjDmO6avNnJAhUD9h4KHXWVBuAQ6AEIHDAA#v=onepage&q=adaptive%20thermal%20comfort&f=false), I have had several ideas for how to integrate the findings of recent comfort surveys into our energy models. Generally, the focus of thermal comfort research seems to be shifting from theoretical human energy balance calculations to surveys of occupant behavior, giving us a lot of great data that helps incorporate these behavioral factors in our energy models. To continue one of the ideas that you mention, Theodore, here is a plot from the book that describes the window-opening behavior of occupants as the indoor temperature increases:
Currently, EnergyPlus does not easily allow you to set such a function for window-opening, as you point out but the incorporation of this behavior seems necessary to produce an accurate model of a naturally ventilated building (since opening all of the windows as soon as the indoor temperature hits 21 C is far from realistic). To get around this, I was thinking of including an option on the nat vent component that will put in a series of IF/THEN nat vent objects that approximate this smooth function through a step function:
IF 19 < indoor temperature < 20 THEN WindowOpening = 10%
IF 20 < indoor temperature < 21 THEN WindowOpening = 15%
IF 21 < indoor temperature < 22 THEN WindowOpening = 21%
IF 22 < indoor temperature < 23 THEN WindowOpening = 35%
...
I am hoping to implement this soon.
To describe the example that I have realized was not so helpful with time, when I was first drafting the idea for high-resolution comfort maps (https://www.youtube.com/playlist?list=PLruLh1AdY-Sj3ehUTSfKa1IHPSiuJU52A), I originally thought that I would develop computer models an animations of occupants moving around the thermally diverse space to make themselves more comfortable. Once I started to get into this, however, I realized that the social characteristics of a space usually have a much larger impact on where people place themselves than the thermal characteristics and it is not until the thermal characteristics become very uncomfortable or the presence of other people is completely removed that the thermal environment dominates the movement behavior. Thus, in order to model the occupant behavior, I would have to code in the relative importance of a large number of these social characteristics in relation to thermal comfort, which would have been a process of me simply making up coefficients to produce cool-looking but somewhat meaningless animations. It is only when my nicely-designed thermal environments were aligned with the social/programmatic characteristics of the space that I could argue that I was justifiably adding value since the thermal characteristics were not in contradiction to or being weighted against the social ones. So, in the end, realized that all I needed in order to produce a good design was to align the thermal environment with the placing of program and the agent-based modelling would not have enabled the production of a much better design. This is the reason why the human silhouettes are manually placed in the thermal animations on the youtube playlist in the above link and is the reason why I do not intend to incorporate agent-based modelling in this particular manner.
Let me know your thoughts on this as I realize I may also be looking at this from a narrow perspective that is not informed by all that agent-based modelling has to offer.
-Chris…
ntación en distintos procesos del Diseño.
Se abordaran los conceptos basicos y la metodologia para abordar problemas de diseño a traves del desarrollo de Herramientas Algorítmicas mediante un proceso de programacion visual.
Como plataforma de trabajo se utilizara Rhinoceros+Grasshopper.
Instructor:
Leonardo Nuevo Arenas
Fechas:
17 y 18 de Septiembre de 2011
Lugar:
Calzada del Federalismo Sur No. 135 Altos 3, Frente al Parque Rojo (http://bit.ly/nNOuZ5)
Cupo:
Limitado a 15 plazas
Fecha limite de pago:
Viernes 9 de Septiembre
Importante:
Los participantes deberán traer su propia Laptop con todo el software y actualizaciones (originales o versiones de demostración oficiales) previamente instaladas. (Se fijara una fecha unos días antes para revisas que todos los equipos estén en orden y listos para trabajar). Si planeas venir de fuera de la ciudad contactanos y te pondremos en contacto con otras personas que también vayan a hacerlo para en caso de desearlo puedan compartir su lugar de estancia.
Contacto:
Leo. 33 3956 9209
nuarle@msn.com
Aye. 33 1050 3482
ayeritza.fara@gmail.com…
teraction for its Correlations cycle, AA Athens Visiting School scales up its design intentions in order to investigate links among discrete individual architectural systems in its 2013 version, Recharged.
Recharged with interconnectivity on different levels, the theme of investigation will revolve around the design of semi-independent design prototypes acting together to form elaborate unified results. The driving force in Cipher City: Recharged is the synergistic effect behind complex form-making systems where interactive design patterns arise out of a multiplicity of relatively simple rules.
In collaboration with the National Technical University of Athens, Cipher City: Recharged will explore participatory design and active engagement modeling and will continue building novel prototypes upon horizontal planes.
As in 2012, the design agendas of AA Athens and AA Istanbul Visiting Schools will directly create feedback on one another, allowing participation in either one or both Programmes.
Discounts
The AA offers several discount options for participants wishing to apply as a group or participants wishing to apply for both AA Istanbul and AA Athens Visiting Schools:
1. Standard application
The AA Visiting School requires a fee of £695 per participant, which includes a £60 Visiting Membership. If you are already a member, the total fee will be reduced automatically by £60 by the online payment system. Fees are non refundable.
2. Group registration
For group applications, there will be a range of discounts depending on the number of people in the group. The discounted fee will be applied to each individual in the group.
Type A. 3-6 people group: £60 (AA Membership fee) + 635*0.75 = £536.25 (25 %) Type B. 6-15 people group: £60 + 635*0.70 = £504.5 (30%) Type C. more than 15 people group: £60 + 635*0.65 = £472.75 (35%)
3. Participants attending both AA Istanbul and AA Athens | 40% discount
For people wishing to attend both AA Istanbul 2013 and AA Athens 2013, a discount of 40% will be made for each participant. (The participant will pay the £60 membership fee only once.)
£60 (AA Membership fee) + (635*0.60)*2 = £822
For more information in discounts, please visit:
http://ai.aaschool.ac.uk/athens/portfolio/discounts-2013/
Applications
The deadline for applications is 11 March 2013. A portfolio or CV is not required, only the online application form and payment. The online application can be reached from:
http://www.aaschool.ac.uk/STUDY/VISITING/athens…
Added by elif erdine at 12:33pm on December 13, 2012
ll-Facade using Rhino and Grasshopper Participants will learn; Rhinoceros Grasshopper Advanced Parametric Design Brick Formations and Explorations Shadow-Design Relationship
Session 2: Advanced Digital Modeling for Additive Manufacturing (3D Printing) Participants will learn; How to prepare a 3D design to 3D Printing process in Rhinoceros Advanced Methods for 3D Print optimisation for time and cost effective production 3D Printing software education Cura
INFO
Date Saturday, 28 September 2019 Schedule 9:30am – 2:30pm (Session 1) | 2:45pm – 7:00pm (Session2) Venue (TBC) Pada Labs, Istanbul Language English/Turkish Softwares Rhinoceros Grasshopper 3D Cura Participants will need to bring their own laptops with software installed; other plugins will be distributed at the workshop. Prerequisites All tutorials are open to beginner level. No previous knowledge of Cura and Grasshopper needed. Basic knowledge of Rhinoceros recommended. Participation The workshop is limited to the first 20 applicants. Each student will receive a certificate of participation. Prices for each session: (You can pick one and attend one) Special Early registration (Deadline 1 August ) Students 310 TL Professionals 400 TL Regular registration Students 390 TL Professionals 480 TL Prices for Session 1&2 Combined: (Full Day) Special Early registration (Deadline 1 August ) Students 540 TL Professionals 690 TL Regular registration Students 620 TL Professionals 790 TL DISCOUNTS Group registration of 3 or more people will get a 15% discount. * Previous Pada workshop students will get a 10% discount. DIRECTOR Begum Aydinoglu, M.Arch AA DRL will be instructing and directing the following workshops. REGISTRATION: Email to pada.workshops@gmail.com for registration instructions. Please note that we have limited seats and there won't be any exceptions. …
ion y fabricación en un mismo proceso.
Para este taller se han seleccionado un conjunto de técnicas y estrategias para resolver problemas que hoy se presentan en el diseño y fabricación digital de formas complejas y euclidianas.
Bajo dos entornos de trabajo, entre técnicas interactivas y soluciones algorítmicas, se examinan conceptos y casos de estudio que le permitirán al participante decidir como y en que momento estas tecnologías pueden ser utilizadas como aliadas en los procesos de diseño y fabricación. Tomando como plataforma básica Rhino, se explora y optimiza el diseño y fabricación de topologías complejas bajo los entornos de Grasshopper, RhinoNest y RhinoCam.
En el mes de Febrero de 2010 (23 al 26 de febrero) se realizará el Workshop D.O.F Diseño-Optimizacion-Fabricacion en McNeel Argentina,
Está abierto para todas las personas y al participar obtendrás una licencia de Rhino 4.0.
Para hacer el workshop se requiere un conocimiento basico de Rhino 3.0 o 4.0
Contenidos:
1. Modelado Avanzado y sus Tecnicas. Aplanado y Desarrollo de Superficies.Anidado y distribución Nesting.
2. Introducción al Diseño Paramétrico.Definiciones Avanzadas de Grasshopper,posibilidades y limitaciones. Ajustes de escala para impresión y corte.
3. Introducción a la Manufactura en CNC - RhinoCAM 2.0. Visita al laboratorio CAM.
4. Guía Paso a Paso para la realización de un Renderizado usando Brazil 2.0. Presentación DIGITAL de proyectos.
El workshop tiene una duracion de 32 hrs. (4 dias x 8 horas por dia, horario 9 a 13 hrs y 15 a 19hrs)
Docentes
Andres Gonzalez Posada - McNeel Miami. - Grasshopper - RhinoCAM - RhinoNest
Facundo Miri - McNeel Argentina - Brazil for Rhino.
Se dictara en McNeel Argentina
Ciudad de la paz 2719 3A. - Belgrano - Capital Federal.
Costo del Curso
U$S250+IVA Curso D-O-F SIN entrega de licencia de Rhino 4
U$S350+IVA Curso D-O-F con entrega de licencia de RHino 4 Educativa (solo para docentes y estudiantes).- Precio de la licencia sola U$S195
U$S995+IVA Curso D-O-F con entrega de licencia de Rhino 4 Comercial. (profesionales y empresas) - Precio de la licencia sola U$S995
Contactos:
Facundo Miri
Facundo Miri (54-011) 4547-3458
facundo@mcneel.com
McNeel Argentina
Robert McNeel & Associates
McNeel Seattle - Miami - Buenos Aires
Ciudad de la Paz 2719 3A
www.rhino3d.TV - www.rhinofablab.com
Las personas interesadas pueden llamar al 4547-3458 o enviar mail a facundo@mcneel.com
Quienes esten fuera de la ciudad podran hacer un deposito bancario (solicitar datos de la cuenta por mail) y enviar por mail el comprobante de deposito con siguientes datos:
Nombres completos - DNI - Fecha de Nacimiento - Teléfono fijo - Celular - Correo Electrónico.
Muchas Gracias
You can find the prices at: http://www.rhino3d.com/sales/order-la.htm just click on the "Commercial" o "Student" tab.…
Added by Facundo Miri at 1:10pm on December 10, 2009
ion of both Ladybug and Honeybee. Notable among the new components are 51 new Honeybee components for setting up and running energy simulations and 15 new Ladybug components for running detailed comfort analyses. We are also happy to announce the start of comprehensive tutorial series on how to use the components and the first one on getting started with Ladybug can be found here:
https://www.youtube.com/playlist?list=PLruLh1AdY-Sj_XGz3kzHUoWmpWDXNep1O
A second one on how to use the new Ladybug comfort components can be found here:
https://www.youtube.com/playlist?list=PLruLh1AdY-Sho45_D4BV1HKcIz7oVmZ8v
Here is a short list highlighting some of the capabilities of this current Honeybee release:
1) Run EnergyPlus and OpenStudio Simulations - A couple of components to export your HBZones into IDF or OSM files and run energy simulations right from the grasshopper window! Also included are several components for adjusting the parameters of the simulations and requesting a wide range of possible outputs.
2) Assign EnergyPlus Constructions - A set of components that allow you to assign constructions from the OpenStudio library to your Honeybee objects. This also includes components for searching through the OpenStudio construction/material library and components to create your own constructions and materials.
3) Assign EnergyPlus Schedules and Loads - A set of components for assigning schedules and Loads from the Openstudio library to your Honeybee zones. This includes the ability to auto-assign these based on your program or to tweak individual values. You can even create your own schedules from a stream of 8760 values with the new “Create CSV Schedule” component. Lastly, there is a component for converting any E+ schedule to 8760 values, which you can then visualize with the standard Ladybug components
4) Assign HVAC Systems - A set of components for assigning some basic ASHRAE HVAC systems that can be run with the Export to OpenStudio component. You can even adjust the parameters of these systems right in Grasshopper.
Note: The ASHRAE systems are only available for OpenStudio and can’t be used with Honeybee’s EnergyPlus component. Also, only ideal air, VAV and PTHP systems are currently available but more will be on their way soon!
5) Import And Visualize EnergyPlus Results - A set of components to import numerical EnergyPlus simulation results back into grasshopper such that they can be visualized with any of the standard Ladybug components (ie. the 3D chart or Psychrometric chart). Importers are made for zone-level results as well as surface results and surfaces results can be easily separated based on surface type. This also means that E+ results can be analyzed with the new Ladybug comfort calculator components and used in shade or natural ventilation studies. Lastly, there are a set of components for coloring zone/surface geometry with EnergyPlus results and for coloring the shades around zones with shade desirability.
6) Increased Radiance and Daysim Capabilities - Several updates have also been made to the existing Radiance and Daysim components including parallel Radiance Image-based analysis.
7) Visualize HBObject Attributes - A few components have been added to assist with setting up honeybee objects and ensuing the the correct properties have been assigned. These include components to separate surfaces based on boundary condition and components to label surfaces and zones with virtually any of their EnergyPlus or Radiance attributes.
8) WIP Grizzly Bear gbxml Exporter - Lastly, the release includes an WIP version of the Grizzly Bear gbXML exporter, which will continue to be developed over the next few months.
And here’s a list of the new Ladybug capabilities:
1) Comfort Models - Three comfort models that have been translated to python for your use in GH: PMV, Adaptive, and Outdoor (UTCI). Each of these models has a “Comfort Calculator” component for which you can input parameters like temperature and wind speed to get out comfort metrics. These can be used in conjunction with EPW data or EnergyPlus results to calculate comfort for every hour of the year.
2) Ladybug Psychrometric Chart - A new interactive psychrometric chart that was made possible thanks to the releasing of the Berkely Center for the Built Environment Comfort Tool Code (https://github.com/CenterForTheBuiltEnvironment/comfort-tool). The new psychrometric chart allows you to move the comfort polygon around based on PMV comfort metrics, plot EPW or EnergyPlus results on the psych chart, and see how many hours are made comfortable in each case. The component also allows you to plot polygons representing passive building strategies (like internal heat gain or evaporative cooling), which will adjust dynamically with the comfort polygon and are based on the strategies included in Climate Consultant.
3) Solar Adjusted MRT and Outdoor Shade Evaluator - A component has been added to allow you to account for shortwave solar radiation in comfort studies by adjusting Mean Radiant Temperature. This adjusted MRT can then be factored into outdoor comfort studies and used with an new Ladybug Comfort Shade Benefit Evaluator to design outdoor shades and awnings.
4) Wind Speed - Two new components for visualizing wind profile curves and calculating wind speed at particular heights. These allow users to translate EPW wind speed from the meteorological station to the terrain type and height above ground for their site. They will also help inform the CFD simulations that will be coming in later releases.
5) Sky Color Visualizer - A component has been added that allows you to visualize a clear sky for any hour of the year in order to get a sense of the sky qualities and understand light conditions in periods before or after sunset.
Ready to Start?
Here is what you will need to do:
Download Honeybee and Ladybug from the same link here. Make sure that you remove any old version of Ladybug and Honeybee if you have one, as mentioned on the Ladybug group page.
You will also need to install RADIANCE, DAYSIM and ENERGYPLUS on your system. We already sent a video about how to get RADIANCE and Daysim installed (link). You can download EnergyPlus 8.1 for Windows from the DOE website (http://apps1.eere.energy.gov/buildings/energyplus/?utm_source=EnergyPlus&utm_medium=redirect&utm_campaign=EnergyPlus%2Bredirect%2B1).
“EnergyPlus is a whole building energy simulation program that engineers, architects, and researchers use to model energy and water use in buildings.”
“OpenStudio is a cross-platform (Windows, Mac, and Linux) collection of software tools to support whole building energy modeling using EnergyPlus and advanced daylight analysis using Radiance.”
Make sure that you install ENERGYPLUS in a folder with no spaces in the file path (e.g. “C:\Program Files” has a space between “Program” and “Files”). A good option for each is C:\EnergyPlusV8-1-0, which is usually the default locations when you run the downloaded installer.
New Example Files!
We have put together a large number of new updated example files and you should use these to get yourself started. You can download them from the link on the group page.
New Developers:
Since the last release, we have had several new members join the Ladybug + Honeybee developer team:
Chien Si Harriman - Chien Si has contributed a large amount of code and new components in the OpenStudio workflow including components to add ASHRAE HVAC systems into your energy models and adjust their parameters. He is also the author of the Grizzly Bear gbxml exporter and will be continuing work on this in the following months.
Trygve Wastvedt - Trygve has contributed a core set of functions that were used to make the new Ladybug Colored Sky Visualizer and have also helped sync the Ladybug Sunpath to give sun positions for the current year of 2014
Abraham Yezioro - Abraham has contributed an awesome new bioclimatic chart for comfort analyses, which, despite its presence in the WIP tab, is nearly complete!
Djordje Spasic - Djordje has contributed a number of core functions that were used to make the new Ladybug Wind Speed Calculator and Wind Profile Visualizer components and will be assisting with workflows to process CFD results in the future. He also has some more outdoor comfort metrics in the works.
Andrew Heumann - Andrew contributed an endlessly useful list item selector, which can adjust based on the input list, and has multiple applications throughout Ladybug and Honeybee. One of the best is for selecting zone-level programs after selecting an overall building program.
Alex Jacobson - Alex also assisted with the coding of the wind speed components.
And, as always, a special thanks goes to all of our awesome users who tested the new components through their several iterations. Special thanks goes to Daniel, Michal, Francisco, and Agus for their continuous support. Thanks again for all the support, great suggestions and comments. We really cannot thank you enough.
Enjoy!,
Ladybug + Honeybee Development Team
PS: If you want to be updated about the news about Ladybug and Honeybee like Ladybug’s Facebook page (https://www.facebook.com/LadyBugforGrasshopper) or follow ladybug’s twitter account (@ladybug_tool).
…
ne – power of the many è un corso advanced level che studia la produzione di effetti complessi a partire dalla modellazione di comportamenti semplici su un insieme strutturato con un numero alto di elementi. Attraverso un approccio generico e scaleless sarà possibile affrontare la tematica generale su più fronti e in una molteplicità di declinazioni possibili. Il corso è rivolto a chi,indipendentemente dal proprio background (urbanistica, architettura, ingegneria, design, arte o altro) già possiede una esperienza di base con Rhinoceros e Grasshopper, e desidera sviluppare aspetti di gestione avanzata del flusso di articolato di informazioni attraverso una strategia guidata basata su esempi pratici e sull’implementazione di un progetto personale sul tema generale del “field behaviour”. Sarà trattato anche l’utilizzo di alcuni plug-ins quali gHowl e WeaverBird. Il numero dei partecipanti è fissato a un massimo di 20 per offrire un tutoraggio proficuo ed una effettiva esperienza di learning ad ogni iscritto.
[.] Temi:
teoria
. complessità, emergence, effetti di campo (field behaviour), sensibilità, efficienza multiperformance
tecnica
. dati:gestione e manipolazione avanzata del data tree, streaming e visualizzazione; transizione, blending e modulazione delle geometrie; generazione e controllo multiperformance di popolazioni di componenti; attrattori, drivers e tecniche di modulazione avanzate; uso delle mesh con WeaverBird; ottimizzazione con Galapagos
[.] Dettagli :
Tutors: Alessio Erioli + Andrea Graziano – Co-de-iT
Si richiede esperienza di base nella modellazione in Rhino (equivalente a Rhino training Level 1, il Level 2 è gradito – la documentazione per il training è disponibile gratuitamente all’indirizzo: http://download.rhino3d.com/download.asp?id=Rhino4Training&language=it) e nell’uso di Grasshopper (la suddivisione di una superficie NURBS in componenti tramite isotrim è data come base assodata)
. luogo:
IreCoop – via Vasco De Gama 27 _ Firenze
. durata:
25-27 febbraio 2010 – 3 giornate consecutive _ orario 9:00 – 18:00
. costo:
professionisti – 450.00 € studenti – 280.00 €
. note:
scadenza iscrizioni: 20 febbraio 2010 il corso sarà attivato con un numero minimo di 15 iscritti al termine sarà rilasciato un attestato di frequenza gli iscritti dovrano venire muniti dei propri laptop con software installato. una versione free per 30 giorni è disponibile sul sito www.rhino3d.com
. contatti:
iscrizioni + info alloggi: www.irecooptoscana.it (Cosa offriamo > formazione > altri corsi)
info sul corso: info@co-de-it.com…
h, and using the BScale and BDistance are creating havoc somehow too. I've simplified first, and used the Kangaroo Frames component along with setting internal iterations, to make MeshMachine act like a normal component, along with releasing the FixC and FixV. The FixV didn't make any sense anyway. I've also set Pull to 0 to speed it up during testing, since much less calculation is involved to just let the meshes collapse, prevented from disappearing altogether by using a mere 15 iterations.
Also, your breps are open so that allows much more chaos and then collapse, though they did manage to close themselves too at times. Here is closed breps with a full 45 iterations:
So now that it's working, lets re-Fix the curves, and the problem arises that there is an extra seam line that is getting fixed too, running along the cylinder, stopping the mesh from pulling tight under tension wherever a vertex happens to be near that line:
So lets grab only the naked edge curves instead:
And what happens if we lose the end caps, now that we don't have an extra line skewing the result?:
There is no real curvature differences since it's not a curvy brep so the Adapt at full 1 setting has little to do. Now what does the BScale and BDist do? Nothing! Why? Your scale is out of whack, 99 mm high cylinders but only a falloff maximum of about 5, so let's make the falloff be 25 instead, but I must restore the end caps or the meshes collapse away for some reason and freezes Rhino for a minute or so the first time I try it:
It's a start.
If I intersect the cylinders, nothing changes, since they are being treated as separate runs. MeshMachine outputs a sequence of two outputs though, due to Frames being set to a bare minimum of 2 needed to get it to work, so I filter out the original run, which is just the unmodified initial mesh it creates.
The lesson so far is that closed meshes are much less prone to collapse and glitches leading to screw ups.
A Boolean union of the cylinders is when it gets funner, here show with and without the fixed curves that seem to define boundaries too where really there are just polysurface edges:
…
rring to the above image)
Area
effective
effective
Second
Elastic
Elastic
Plastic
Radius
Second
Elastic
Plastic
Radius
of
Vy shear
Vz shear
Moment
Modulus
Modulus
Modulus
of
Moment
Modulus
Modulus
of
Section
Area
Area
of Area
upper
lower
Gyration
of Area
Gyration
(strong axis)
(strong axis)
(strong axis)
(strong axis)
(strong axis)
(weak axis)
(weak axis)
(weak axis)
(weak axis)
A
Ay
Az
Iy
Wy
Wy
Wply
i_y
Iz
Wz
Wplz
i_z
cm2
cm2
cm2
cm4
cm3
cm3
cm3
cm
cm4
cm3
cm3
cm
I have a very similar table which I could import to the Karamba table. But I have i_v or i_u values as well as radius of inertia for instance.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
dimensjon
Masse
Areal
akse
Ix
Wpx
ix
akse
Iy
Wpy
iy
akse
Iv
Wpv
iv
Width
Thickness
Radius R
[kg/m]
[mm2]
[mm4]
[mm3]
[mm]
[mm4]
[mm3]
[mm]
[mm4]
[mm3]
[mm]
[mm]
[mm]
[mm]
L 20x3
0.89
113
x-x
4,000
290
5.9
y-y
4,000
290
5.9
v-v
1,700
200
3.9
20
3
4
L 20x4
1.15
146
x-x
5,000
360
5.8
y-y
5,000
360
5.8
v-v
2,200
240
3.8
20
4
4
L 25x3
1.12
143
x-x
8,200
460
7.6
y-y
8,200
460
7.6
v-v
3,400
330
4.9
25
3
4
L 25x4
1.46
186
x-x
10,300
590
7.4
y-y
10,300
590
7.4
v-v
4,300
400
4.8
25
4
4
L 30x3
1.37
175
x-x
14,600
680
9.1
y-y
14,600
680
9.1
v-v
6,100
510
5.9
30
3
5
L 30x4
1.79
228
x-x
18,400
870
9.0
y-y
18,400
870
9.0
v-v
7,700
620
5.8
30
4
5
L 36x3
1.66
211
x-x
25,800
990
11.1
y-y
25,800
990
11.1
v-v
10,700
760
7.1
36
3
5
L 36x4
2.16
276
x-x
32,900
1,280
10.9
y-y
32,900
1,280
10.9
v-v
13,700
930
7.0
36
4
5
L 36x5
2.65
338
x-x
39,500
1,560
10.8
y-y
39,500
1,560
10.8
v-v
16,500
1,090
7.0
36
5
5
I have diagonals (bracings) which can buckle in these "non-regular" directions too, and they do. If I could add those values then in the Karamba model I could assign specific buckling scenarios..... I can see another challenge which will be at the ModifyElement component, I will not be able to choose these buckling lengths, in these directions.
Do you think this functionality can be added within short, or should I try to find another way to model these members?
Br, Balazs
…
y anyway ;))
Since 2014 i begun to get back into the construction biz for some dozen main reasons, one of them being the highly increased availability of this kind of software "power", and robotics.
first project ended by 1stQ 2015 was focused on the development of a parametric block for construction. (almost sure the first parametric product designed in Uruguay, and probably one of the few first of this kind globally...)
Far from being a complicated model. In fact the standard model is extremely simple, key thing is that is fully parametric...
dimensions, materials, textures, colors... and so on
second key thing is that the main common component of the blocks (an EPS core) is robotically machined...
the blocks are the base of a construction system (oriented mainly - though not restricted only - to residential buildings) that
- is based on digital models, tendentially to be used in parametric models of buidings
- lab tested to prove to be 1.5 times as compression resistant than traditional bricks and blocks. (autoportability up to two stories buildings)
- has recently proved (due to size) to be 300% more efficient than the classic and 200% more efficient than steel frame in (our country official figures)
check it out here
--
https://drive.google.com/file/d/0B1TRxxgF_sEnQnZrTkZGbUx3cmM/view
--
- and it's aimed to be mass produced and handled by robots...
this project ended on 1H 2016
and i filed 4 patents in the process.
3 of them of mechanical devices designed as extensions for a cnc machine i own
and the fourth (
the patent related specifically with the blocks ) included a dozen of innovations (believe me...i have almost 15 yrs in the biz, and are coool stuff...)
along the project I've been working with inventor, even knowing in advance it will lack the kind of features I wanted to program many things... (lisp, VB, etc.... all same species of -prehistoric - animals) to leverage the tool to the sky - and far beyond... -
but was an alternative valid by that time because it allows the implementation of some form of parametric models, had a local representative and some supposedly skilled guys in the neibourhood....
but life is hard... and none of the latter two rendered me any significant help
so I had to take the tour myself...
- mind i never regret to do things that others cant -
and finish what i start
this one was a great project for many figures... and ended with more results than the ones commited to accomplish...
... some more history here ....
then because of a customer who brought a ZHA project ! to quote..., I crossed with rhino, and then met GH again to notice to my great joy and pleasure, in what kind of animal it had developed...
since money talks I'm investing hard on getting up to the expectations, and beyond as i usually do...
and thats how we met..
2017-2018 it's the time frame to build two robots. first one is a prototype to handle the k-nano blocks in the production process, delivery AND at the construction site ( a "smart crane" we nicknamed...)
the other one is the first prototype of robot to assist in the fabrication (smart blocker we called it to be creative ! ;))
then by 2018-2019 i'll be making a "kinda contour crafter" machine to complete the pie :) (you'll be interested on this..)
i guess you already know what all this has to do with GH...
i already have all the components i can imagine to do almost all i ever wanted to do in relation to this set of projects
but in almost a single tool !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
i can design, animate, render, optimize, simulate and even robotic simulate..
so, i have to ask...
is there a chance you might be interested in helping us in some projects we are starting on march and june 2017 (8 and no more than 18 months of duration respectively) ?
sent you a friend request, for the case you might be interested to continue by e-mail...
in any case many thanks for your help and inspiration !
best regards !
long happy marriage, and large figures bank account !
…