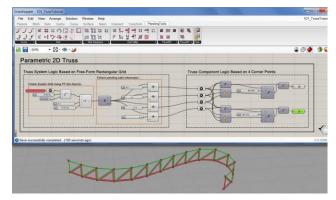
Parametric 2D Truss Tutorial using PanelingTools Add-On to Grasshopper

Overview

This tutorial shows how to create a parametric truss that is based on a curve. It is based on <u>David Fano's</u> <u>truss tutorial</u>. The main advantages of using <u>PanelingTools Add-On</u> (PT-GH) over GH standard components are:


- System logic is easier to understand, put together and edit.
- System logic is more flexible. It is not restricted to surfaces and their iso-curve directions which greatly limit user control over dimensions and orientation of truss components.
- The truss component logic is based on points, rather than surfaces, which is lighter.

Where to find PanelingTools Add-On to Grasshopper

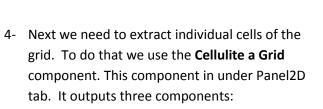
Download, examples and forum is found here: <u>http://www.grasshopper3d.com/group/panelingtools</u>

Step by Step Truss Tutorial

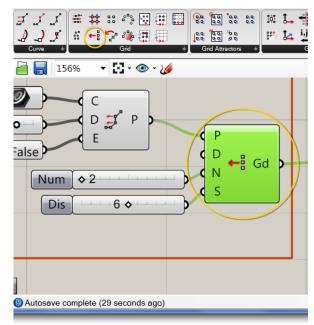
 This is how the final definition looks. The truss component logic uses standard GH components based on four corner points. The system logic defines a rectangular grid of cells using PT-GH as will be illustrated below.

2- To define the system logic, first we need to create a grid. In this case our grid is based on a curve¹. First step is to create a reference a curve in Rhino, then divide the curve by distance which represents the width of the truss.

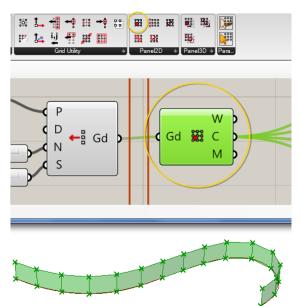
Paran	ms Math		Sets	Vector	Curve	Surface	Mesh	Intersect	Tr
(= g ⁰) = 0	f _f	-00+ -00+ -00+	** :	: * :	a 🗱	e e	•00 00	👬 🕹	
7.) 🍠	00 00	+8 5	e 🦀 🦉		00 00	9 Q	18 14	i,j
Cur	ve +			Grid	+	Grid Att	ractors +		Gric
📔 🔚 156% 🔹 🔀 • 💿 • 🌽									
(Se	t ba	se	cur	ve 🕅	0		4 c		
	0		-					т Р	
0.000									
Toggle False									
				99	Tais				

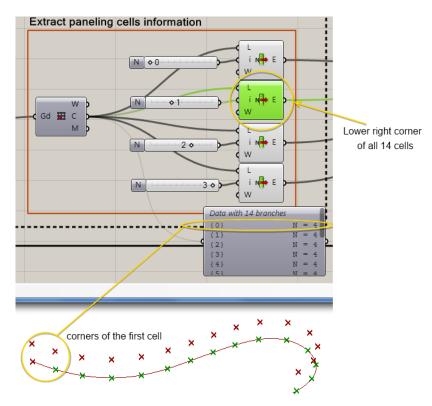


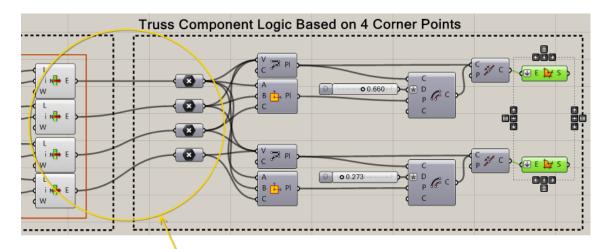
¹ There is a variety of ways to generate the basic grid of cells using grid tab in PT-GH or simply by feeding a tree structure of points using GH standard components. One way to create a tree or grid of points using GH components is to divide series of curves.


3- Now that the curve is divided, we generate the grid using the Planar Extrude grid component under Grid tab of the PanelingTools menu.

Grid components in PT-GH generate two dimensional grids of points, which are nothing but a simple GH tree structure where each branch contains a list of points or a row in the grid. There are many different ways to defining these points:


- a- Directly as planar or polar grid.
- b- Extruding curve planar or polar
- c- Extract intersections of curves.
- d- Use base surface and divide its domain by number, distance or parameter list (for variable distance) using surface uv structure.
- e- Divide base surface by distance regardless of its uv structure.


- a- W (Wires): a list of all edges.
- b- C (Cells): a list of the four corners of each cell (this is what we need here).
- c- M (Meshes): a list of mesh faces of all cells.



5- In this case we have 14 cells, each has 4 corners.
We need to get a separate list of each corner to feed into our component logic. We used GH list component to separate corners.

6- Create custom component logic that is based on 4 corners and feed system grid or cells corners into the component logic.

Feed system points into the truss component corners logic

