

The People Behind the Pixels

Triangle Surfaces with Discrete Equivalence Classes

Mayank Singh
Scott Schaefer

I ntroduction

Liu et al. [2006]

Cutler and Whiting [2007]

Pottmann et al. [2007]

Killian et al. [2008]

Pottmann et al. [2008]

Schiftner et al. [2009]

I ntroduction

Liu et al. [2006]

Cutler and Whiting [2007]

Pottmann et al. [2007]

Killian et al. [2008]

Pottmann et al. [2008]

Schiftner et al. [2009]

I ntroduction

Liu et al. [2006]

Cutler and Whiting [2007]

Pottmann et al. [2007]

Killian et al. [2008]

Pottmann et al. [2008]

Schiftner et al. [2009]

I ntroduction

Liu et al. [2006]

Cutler and Whiting [2007]

Pottmann et al. [2007]

Killian et al. [2008]

Pottmann et al. [2008]

Schiftner et al. [2009]

I ntroduction

Liu et al. [2006]

Cutler and Whiting [2007]

Pottmann et al. [2007]

Killian et al. [2008]

Pottmann et al. [2008]

Schiftner et al. [2009]

Economy

Paneling Architectural Freeform Surfaces
Michael Eigensatz, Martin Kilian, Alexander Schiftner, Niloy J. Mitra,
Helmut Pottmann and Mark Pauly

Motivation

Beijing Aquatic Center

Equivalent Set Surface

 576 triangles | 6 unique triangle
Patterns - 2D

Planar patterns generated by Craig Kaplan [2004]

Patterns - 3D

Quad parameterization of planar patterns [2009]

Mosaic - 2D

Kim \& Pellacini [2002]

Elber \& Wolberg [2003]

Mosaic - 3D

Equivalent Set Surface

Discrete Equivalence Classes

Input Shape

Example

5-Point Tensile Roof 1280 triangles

Canonical Triangle

$\min _{C_{j}, i n d} \sum_{i} D\left(P_{i}, C_{i n d(i)}\right)$

Triangle Similarity

$$
D(A, B)=\min _{R^{T} R=I, T, j} \sum_{l=1}^{3}|\underbrace{R b_{\text {perm }(j, l)}+T}_{\text {Transform B }}-a_{l}|^{2}
$$

Triangle Similarity

Canonical Triangle

Canonical Triangle

Adaptive K-Means Clustering

Each triangle is represented as a point

Adaptive K-Means Clustering

Compute center of the cluster using nonlinear search

Adaptive K-Means Clustering

Assign the farthest point to a new cluster

Adaptive K-Means Clustering

Reassign points to available clusters

Adaptive K-Means Clustering

Process continues to generate more clusters

Adaptive K-Means Clustering

Process continues to generate more clusters

Clustering

$\left.\begin{array}{l|l}\text { Canonical } \\ \text { Polygons }\end{array}\right]$ Polygon Assignment \longrightarrow

 Generate

 Generate

 Clusters

 Clusters}
Clustering

Number of Clusters

Clustering

Clustering

Varying the Number of Clusters

Before Global
Optimization

Spacing between Triangles

20 clusters

Before Global Optimization

Disconnected Triangles

Poisson Optimization - Yu et al. [2004]

Global Optimization

Global Optimization

$$
\min _{P}\left(E_{g}+\alpha E_{c}+\beta E_{b}\right)
$$

Proximity and Fairness

Proximity and Fairness

Global
Non-Linear
Optimization

Proximity and Fairness

Global
Non Linear
Optimization

1 - Cluster

Architectural Dome 576 Triangles

2 - Clusters

3 - Clusters

4 - Clusters

5 - Clusters

6 - Clusters

Clustering \& Global Optimization

Before Global Optimization

After Global Optimization

Example

2492 triangles | 64 clusters $=2.56 \%$ of total triangles

Roof

Venus
 6.017\%

Bunny

2.436\%

Comparison

K-set Tilable Surfaces

Non planar Quadrilaterals
8 permutations for best rigid transformation

Mean S-quad, compute once
Global non-linear optimization
Begin with large \# of clusters \& merge

Ours

Planar Triangle
6 permutations for best rigid transformation

Non linear search for canonical, iterative
Global linear optimization
Begin with small \# of clusters \& add more

Future Work

- Detect outliers in clusters
- n-gons
- Planarity
- Modify topology
- Symmetry?
- Maintain streamlines
- Non-existent?

Paneling Arch. Freeform Surfaces

- Use small \# of molds, with associated cost
- Create non-congruent panels from the mold
- Emphasis upon streamlines
- Minimize divergence and kink angle

Clustering

Adding 1 Cluster incrementally and running optimization to convergence

17 Clusters before running global optimization to convergence

Rotation of Canonical Triangle

50\% rotation

100% rotation

Paneling Architectural

 Freeform Surfaces- Use of small \# of molds
- Each mold has an associated cost
- Emphasis upon streamlines
- Divergence and Kink angle

K-set Tilable Surfaces

- Non-planar quads
- 8 permutations for rigid transformation
- Global non-linear optimization
- Start with large \# of clusters and merge
- Mean S-quad, computed once

Triangle Surfaces with Discrete Equivalence Classes

- Planar Triangles
- 6 permutations for rigid transformation
- Global linear optimization
- Begin with 1 cluster, add more
- Non linear search for canonical triangles, updated for each iteration

