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Presentation Notes
hello everyone i am mayank singh, and today i will talk about the idea of approximating any given triangulate shape using discrete equivalent sets.
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Presentation Notes
the primary application of this work lies in the field of building architecture.
lately there has been a lot of interest in solving discrete geometric problems related to freeform shapes. 
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In context of structural challenges --- this can be planarization of panels, 
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or generating multi-layer representation for a given shape,
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or discretizating surface into developable patches
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The challenge can also be aesthetic in nature --- such as packing a set of circles over a curved facade of the building.



Economy

Paneling Architectural Freeform Surfaces 
Michael Eigensatz, Martin Kilian, Alexander Schiftner, Niloy J. Mitra, 

Helmut Pottmann and Mark Pauly
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Beyond structural and aesthetic consideration - the challenge may also lie in simplifying geometry so as to reduce construction complexities. 
For example, in the previous presentation  Eigensatz et al. – approximated the surface using a small set of unique molds, each with associated cost function



Motivation

Beijing Aquatic Center
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Our motivation for cost cutting and simplifying construction complexity comes from leveraging the economies of scale. 

For example, the initial facade design of Beijing aquatic center consisted of a large number of unique panels.
This design was prohibitively expensive and excessively complex for construction.
Practical consideration forced a redesign where the number of unique panels was reduced to a small number.




Equivalent Set Surface
576 triangles | 6 unique triangle
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Beijing Aquatic Center is a shaped like a box – with 5 planar surface (walls and roof).
Their solution for such a simple shape is trivial.

We aim to accomplish the something similar using curved surfaces – both open and closed.
For example, here we have a domed architectural shape with 576 triangles. 
We approximate this by repeating only 6 unique triangles.



Patterns – 2D

Planar patterns generated by Craig Kaplan [2004]
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The concept of generating computational patterns with repeating a unit entity is a well studied problem. 
Craig Kaplan in his doctoral research demonstrated various algorithms that can generate very aesthetic planar patterns.



Patterns – 3D

Quad parameterization of planar patterns [2009]
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Recently he also published work that extends the same to 3d surfaces.
This uses quad parameterization to map the planar patterns onto 3D surface.
This causes distortion, which is common to all parameterization techniques.

Uses simple texture mapping.



Mosaic – 2D

Kim & Pellacini [2002]

Elber & Wolberg [2003]
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Another related segment of work is that of representing a shape using a small set of repeating tiles. 
Kim & Pellacini in 2002 and 
Elber & Wolberg in 2003 accomplished the same in 2D --- using metrics such as curvature lines.



Mosaic – 3D

Lai et al. [2006]

Passo & Walter [2008]
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Similarly curvature aligned tiles can be used to cover 3D shapes as well.

Lai et al. in 2006 and 
Passo and Walter in 2008 --- accomplished the same by gluing a set of well spaced tiles. 

Note that the surface here is covered with quad tiles along with substantial amount of gluing material. 

We attempt to achieve something similar – but without the gluing material. 
And the spacing or overlap between tiles has to lie within construction tolerances.�
Tile the surface with predefined sized tiles. In contrast we compute our canonical triangles based upon the triangulation of the surface.



Equivalent Set Surface

OptimizedOriginal
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Here is an example of a surface generated using our algorithm. 

On the left hand side we have the original domed shape with 576 triangles, and
On the right hand side is the same shape approximated using only six unique triangles.
The six types of triangles are shown in distinct colors.

Use this slide – if asked about symmetry.
Our clustering respects inherent symmetry in the geometry.



Discrete Equivalence Classes

Clustering

Rigid Transformation

Global Linear Optimization

Modified 
Geometry

Polygon Assignment &
Canonical Triangles

Mesh of Canonical 
Triangles

Input Shape
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Here is an overview of the entire process.
The entire process loops until the error falls below the predefined construction threshold.

 The input to our method is a triangulated mesh.
 We begin by generating an initial set of cluster – this assigns each triangle a unique cluster along with generating a representative canonical triangle for the cluster.
 The canonical triangle is then transformed – so as to replace the triangle in the mesh
 We then using linear optimization modify the input geometry to match the mesh of canonical triangles.



Example

5-Point Tensile Roof
1280 triangles
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Presentation Notes
Let me explain the process with a simple example --- here is a 5 point roof with 1280 triangles.



Canonical Triangle
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To keep things simple, let me classify all the triangle to be a part of a single cluster. 
Now for this cluster, I would like to compute a representative triangle that best approximates all of them. 

The goal there is to replace all the triangles in the cluster, in this case the entire shape, with this representative or canonical triangle. 

Mathematically, this canonical triangle minimizes the sum of distance to all the triangles in the cluster.



Triangle Similarity
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The idea of distance is not quite as simple as Euclidian distance between two points. 
In order to compute distance between two triangles A and B - we perform a rigid transformation such that B maps onto A. 



Triangle Similarity
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Along with computing translation and rotation that minimized the distance between the corresponding vertices of the two triangles, 
We also consider the permutation of mapping triangle B onto A.

This makes our optimization discrete and non-linear in nature.

Finally we pick the rotation, translation and mapping that has the lowest sum square distance between the vertices. 



Canonical Triangle
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Now that we have defined distance computation between two triangles, we can compute the canonical triangle. 
The canonical triangle will have the least sum squared distance to all triangles in the cluster.

Note that the canonical triangle is independent of a reference frame.
Thus it can be represented using only three degrees of freedom. 
This can be either – 2 angles and an edge length, or 3 edge lengths or as we have it in our case – the x, y coordinates for the 2 vertices.

The non-linear nature of our search comes from the 6 discrete mappings of the two triangles.
Owing to the 3 degrees of freedom, the space complexity of our non-linear minimization is considerably small.
In practice we use levmar to compute the canonical triangle.
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Once we have the canonical triangle - we can replace all the triangles in the cluster with the canonical triangle.

We again use the distance minimizing transformation to map the frame independent canonical triangle to each triangle in 3D space.

Note that this is a rigid transformation that preserves the angle as well as the edge lengths of the canonical triangle – while being transformed.



Adaptive K-Means Clustering

Each triangle is represented 
as a point
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The example just shown has only 1 cluster.
In order to better approximate the shape and preserve the shape of triangles we would like to have more than one cluster.

To detect similar triangles in space we use a well known clustering algorithm referred to as – adaptive k-means clustering.
Here we begin with all points, in our case triangles, assigned to the one cluster.



Adaptive K-Means Clustering

Compute center of the cluster 
using nonlinear search
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We then compute the center of the cluster – in our case the canonical triangles – using nonlinear search



Adaptive K-Means Clustering

Assign the farthest point to a 
new cluster

Presenter
Presentation Notes
We create the successive cluster by picking the farthest point in the space and assigning it to a new cluster.
Note that this point is also currently the center of this newly formed cluster.



Adaptive K-Means Clustering

Reassign points to available 
clusters
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The points in the space are then reassigned to the two clusters.



Adaptive K-Means Clustering

Process continues to generate 
more clusters
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We then recompute the center for each cluster.

To create the next cluster – we again compute the farthest point in the space.





Adaptive K-Means Clustering

Process continues to generate 
more clusters
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This process continues iteratively as long as we would require more clusters.

Points that lie in proximity may be representing triangles that are distributed over the surface.




Clustering

Polygon Assignment

Generate 
Clusters

Nonlinear Optimization

Canonical 
Polygons
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Just to recap the entire clustering process --- we begin with 
polygon to cluster assignment  generate clusters 
we use nonlinear search to  compute canonical polygons
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As you would expect increasing the number of clusters would help us compute canonical triangles that better approximate the triangles in the cluster.
Thus dropping the cumulative error in mapping triangles.

Here is a graph showing how the error drops significantly initially as clusters are added.
The error drop slows down later on.

This error would eventually go down to zero when each triangle is assigned to its own cluster. 
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1280 triangles | 1 cluster

Rigid Transformation

Presenter
Presentation Notes
Going back to the example with only one cluster – notice that a single cluster produces significant spacing / overlap between triangles.



Clustering

1280 triangles | 10 clusters
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This spacing / overlap is reduced substantially when using higher number of clusters. 
Here is an example of the same shape with 10 clusters.
Each cluster is shown in distinct color.
Down at the bottom we have canonical triangle for each cluster.



Varying the Number of Clusters

1 5

10 20

Before Global 
Optimization
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Here is an example of a closed bean shaped model, with varying number of clusters. 
You may notice that the shaping and overlap between triangles reduces as the number of clusters are raised.


STILL GAPS. HAVE TO DO SOMETHING MORE THAN CLUSTERING
CHANGE GEOMETRY TO REDUCE SPACING



Spacing between Triangles

20 clusters

Before Global 
Optimization
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We zoom into the example with 20 clusters. 
Note that even with 20 clusters we have space between triangles. 
This is before we perform any global optimization.



Disconnected Triangles

Poisson Optimization - Yu et al. [2004]
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The problem of disconnected triangles have been addressed before. 
The first example was by Yu et al. in 2004 – where they used Poisson optimization to join a set of disconnected triangles.

We use a similar approach as well.



Global Optimization
Poisson Optimization

Re-Cluster

Re-Compute 
Canonical 
Triangles

Deform
Original
Mesh

Presenter
Presentation Notes
In order to address the problem with spacing between triangles – we perform a global linear optimization. 

Once we have computed the clusters for a given shape, we perform a poisson based optimization. 
Such a problem has been widely studied in computer graphics – introduced by Yu et al.

We attempt to minimally deform the original shape so that its geometry matches with the mesh generated using canonical triangles.
This is done by minimizing the difference in gradients for the original shape and canonical mesh. 

Computation of canonical triangles and global optimization takes place in a alternating manner. 
This loop continues until the error drops below the predefined construction threshold.



Global Optimization
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Gradient Proximity to original 
shape

Presenter
Presentation Notes
Along with performing poisson based minimization – we add additional terms that maintain proximity to the original shape. 

For closed surfaces we minimize the distance to the tangent plane at the closest foot point on the original surface.
For surfaces with boundaries we add another term that maintains proximity to the boundary of the original surface.

A linear combination of these terms is used for global optimization.
The magnitude of weights alpha and beta decrease as the optimization progresses.



Proximity and Fairness
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One of the problem we observed associated with the global minimization is oscillation in the surface. 
The oscillations satisfy the requirement of being close to the underlying surface, however does not maintain the normals of the underlying shape.

Ideally, we would like maintain the shape and the normals of the original shape. 
We can do so by either by making our optimization non-linear or as in our case by rotating the canonical triangle to lie in the plane of the original triangle.



Proximity and Fairness

Global 
Non-Linear 
Optimization
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One of the problem we observed associated with the global minimization is oscillation in the surface. 
The oscillations satisfy the requirement of being close to the underlying surface, however does not maintain the normals of the underlying shape.

Ideally, we would like maintain the shape and the normals of the original shape. 
We can do so by either by making our optimization non-linear or as in our case by rotating the canonical triangle to lie in the plane of the original triangle.
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∑
==

−+
3

1

2
),(

,,
||min

l
lljperm

jTIRR
PTRC

T

Rigid Transformation

Global 
Non-Linear 
Optimization +

Rotate Canonical 
Triangle
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Align the normal of the canonical triangle “C” with the triangle “P”




1 - Cluster

Architectural Dome
576 Triangles



2 - Clusters



3 - Clusters



4 - Clusters



5 - Clusters



6 - Clusters



Clustering & Global Optimization

Presenter
Presentation Notes
Notes: Also – explain the entire story – tell them you’ll play twice
Changes quickly initially – then slows down to a crawl
Double click – play again and say so.




Before Global Optimization
1 5

2010
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To demonstrate the effect of using varying number of cluster we refer to this closed bean shaped model.
Here we have the model with 1, 5, 10 and 20 clusters.

You’ll notice that the spacing and overlap reduces as the # of clusters are raised.



After Global Optimization
1 5

2010
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This space and overlap can be further closed using global optimization.

However, when we have low number of clusters, there aren’t enough degrees of freedom for the optimization to represent the shape faithfully.
You can clearly notice that there are undesirable artifacts in the bean with 1,5 and even 10 clusters.

Potentially, we can raise the weights for proximity and remain faithful to the underlying surface.
However this comes at the cost of slowing down the rate of convergence to a crawl.



Example

2492 triangles | 64 clusters = 2.56% of total triangles
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This is an example of an abstract shape with 2492 triangles with only 64 clusters unique triangles, this is 2.5% of the total # of polygons.
Please note that each vertex of the shape has a curvature. A closed shape will have a cumulative curvature, which is a multiple of a 2pi, coming from Gauss Bonnet theorem. This enforces a global constraint. 
This may not be true for shapes with boundaries. It is easier to optimize such shapes – especially where the boundary may not be strictly enforced. The movement of boundary may give the vertices an extra degree to move around.



Roof
1.722%

Presenter
Presentation Notes
Here is an example of  a symmetric architectural roof with 1800 triangles and 31 canonical triangles



Torus Knot
2.014%
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This is an example of a torus knot with 2880 triangles and 58 triangles.



Venus
6.017%
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Here is an non-symmetric shape. Arbitrary complex shapes require more clusters



Bunny
2.436%
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This is an example of the stanford bunny with 1724 triangles and 42 clusters.



4-point roof

0.313%



5-point roof
0.781%



Comparison
K-set Tilable Surfaces Ours

Non planar Quadrilaterals Planar Triangle

8 permutations for best rigid 
transformation

6 permutations for best rigid 
transformation

Mean S-quad, compute once Non linear search for canonical, iterative

Global non-linear optimization Global linear optimization

Begin with large # of clusters & merge Begin with small # of clusters & add more



Future Work

• Detect outliers in clusters
• n-gons

– Planarity

• Modify topology
– Symmetry?

• Maintain streamlines
– Non-existent?

Presenter
Presentation Notes
Tight clusters, Unique triangles Taking out outliers – may further tighten the cluster
PQ Quad / Conical meshes – non-linear, raises the complexity of the problem
Local editing of topology – such as edge flip to reduce the error. May not be desirable for some shapes. Bunny would be fine.
Architectural shapes may have parameter lines that one would like to maintain. Prior knowledge of streamlines may help make this decision
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Thank you. Here is a small video showing the example models on a turntable.





Paneling Arch. Freeform Surfaces

• Use small # of molds, with associated cost
• Create non-congruent panels from the mold
• Emphasis upon streamlines
• Minimize divergence and kink angle



Clustering

17 Clusters before running 
global optimization to 

convergence

Adding 1 Cluster incrementally 
and running optimization to 

convergence
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In the examples shown thus far, we begin with a preset number of clusters and then perform global optimization. 
However this is not a necessary requirement – we can start with a single cluster – perform global optimization and then add clusters along the way.

Here is an example of bean with 
 On the left we have added one cluster at a time along with running global optimization
 While on the right we began with a preset number of clusters and performed global optimization



Rotation of Canonical Triangle

50% rotation 100% rotation
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This is a comparative side-by-side example to highlight how similar the shapes the two shapes are.
This simple rotation helps us maintain the linearity of our global optimization, because of which we are able to run fairly large meshes in a reasonable time frame.



Comparative Analysis
Paneling Architectural 
Freeform Surfaces

K-set Tilable Surfaces Triangle Surfaces with 
Discrete Equivalence 
Classes

• Use of small # of molds 
• Each mold has an 
associated cost
• Emphasis upon 
streamlines
• Divergence and Kink 
angle

• Non-planar quads
• 8 permutations for rigid 
transformation
• Global non-linear 
optimization
• Start with large # of 
clusters and merge
• Mean S-quad, computed 
once

• Planar Triangles
• 6 permutations for rigid 
transformation
• Global linear optimization
• Begin with 1 cluster, add 
more
• Non linear search for 
canonical triangles, 
updated for each iteration

Presenter
Presentation Notes
Highlight the unique aspects of each method
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