

Triangle Surfaces with Discrete Equivalence Classes

Mayank Singh Scott Schaefer

Liu et al. [2006]

Cutler and Whiting [2007]

Pottmann et al. [2007]

Killian et al. [2008]

Pottmann et al. [2008]

Schiftner et al. [2009]

Liu et al. [2006]

Cutler and Whiting [2007]

Pottmann et al. [2007]

Killian et al. [2008]

Pottmann et al. [2008]

Schiftner et al. [2009]

Liu et al. [2006]

Cutler and Whiting [2007]

Pottmann et al. [2007]

Killian et al. [2008]

Pottmann et al. [2008]

Schiftner et al. [2009]

Liu et al. [2006]

Cutler and Whiting [2007]

Pottmann et al. [2007]

Killian et al. [2008]

Pottmann et al. [2008]

Schiftner et al. [2009]

Liu et al. [2006]

Cutler and Whiting [2007]

Pottmann et al. [2007]

Killian et al. [2008]

Pottmann et al. [2008]

Schiftner et al. [2009]

Economy

Michael Eigensatz, Martin Kilian, Alexander Schiftner, Niloy J. Mitra, Helmut Pottmann and Mark Pauly

Motivation

Patterns – 2D

Planar patterns generated by Craig Kaplan [2004]

Patterns – 3D

Quad parameterization of planar patterns [2009]

Mosaic – 2D

Kim & Pellacini [2002]

Elber & Wolberg [2003]

Mosaic – 3D

Lai et al. [2006]

Passo & Walter [2008]

Discrete Equivalence Classes

Example

5-Point Tensile Roof 1280 triangles

Canonical Triangle

Triangle Similarity

$$D(A,B) = \min_{R^T R = I, T, j} \sum_{l=1}^{S} \left| \underbrace{Rb_{perm(j,l)} + T}_{perm(j,l)} - a_l \right|^2$$
Transform B

Triangle Similarity

$$D(A,B) = \min_{R^T R = I, T, j} \sum_{l=1}^{3} |Rb_{perm(j,l)} + T - a_l|^2$$

(0,0,0)

Canonical Triangle

Nonlinear Minimization

$$\min_{C_j,ind} \sum_i D(P_i, C_{ind(i)})$$

Each triangle is represented as a point

Compute center of the cluster using nonlinear search

Assign the farthest point to a new cluster

Reassign points to available clusters

Process continues to generate more clusters

Process continues to generate more clusters

Number of Clusters

$$\min_{R^T R = I, T, j} \sum_{l=1}^{3} |RC_{perm(j,l)} + T - P_l|^2$$

Rigid Transformation

1280 triangles | 1 cluster

Varying the Number of Clusters

Before Global Optimization

Spacing between Triangles

Before Global Optimization

20 clusters

Disconnected Triangles

Poisson Optimization - Yu et al. [2004]

Global Optimization

$$\min_{P}(E_g + \alpha E_c + \beta E_b)$$
Gradient Proximity to original shape

Proximity and Fairness

Proximity and Fairness

Global Non-Linear Optimization

Proximity and Fairness

Global Non-Linear Optimization

Architectural Dome 576 Triangles

Clustering & Global Optimization

Before Global Optimization

After Global Optimization

2492 triangles | 64 clusters = 2.56% of total triangles

Comparison

K-set Tilable Surfaces

Non planar Quadrilaterals

8 permutations for best rigid transformation

Mean S-quad, compute once

Global non-linear optimization

Begin with large # of clusters & merge

Ours

Planar Triangle

6 permutations for best rigid transformation

Non linear search for canonical, iterative

Global linear optimization

Begin with small # of clusters & add more

Future Work

- Detect outliers in clusters
- n-gons
 - Planarity
- Modify topology
 - Symmetry?
- Maintain streamlines
 - Non-existent?

Paneling Arch. Freeform Surfaces

- Use small # of molds, with associated cost
- Create non-congruent panels from the mold
- Emphasis upon streamlines
- Minimize divergence and kink angle

Comparative Analysis

	.	
Paneling Architectural Freeform Surfaces	K-set Tilable Surfaces	Triangle Surfaces with Discrete Equivalence Classes
 Use of small # of molds Each mold has an associated cost Emphasis upon streamlines Divergence and Kink angle 	 Non-planar quads 8 permutations for rigid transformation Global non-linear optimization Start with large # of clusters and merge Mean S-quad, computed once 	 Planar Triangles 6 permutations for rigid transformation Global linear optimization Begin with 1 cluster, add more Non linear search for canonical triangles, updated for each iteration