About the curve of afree hanging rope.

The aim of this document is to determine which function describes the curve of arope
hanging (in a steady state) between two fixed points. In order to make this possible we need to
assume a few things about the rope.

First of al the rope needs to be inelastic and completely flexible. Also we assume that the
rope has a uniform mass such that we can determine the mass of a segment of the rope by
multiplying the length of the segment swith a constant p , where p is the mass per unit length

of rope. In other words m= p.s. Further more the only external force working on the rope
we'll examine will be gravity which is pointing down in the y direction. Since we are free to

choose a coordinate system we choose it such that the lowest point of the rope’s curve will be
positioned at x=0A Yy =0 which wewill call point O.

It should be obvious that at any point of the rope the tangent to the rope’'s curve equals the
tangent to the forces which make up the tension in the rope because the rope will line up with
the forces (it sflexible). This gives us arelation between the forces and the slope of the curve:
Fy _dy .
Fx dx Y|

Likewiseit is easy to see that the curve should be symmetrical in they axis (assuming of
course that gravity works the same on both sides of the y axis). In this document we will look
what happens on the right side of the drawing (x> 0) and we'll get the left side for free. Now
since the rope is flexible and there is no active force working in the x direction, the only force
working in the x direction is due to the tension in the rope which is areactive force, the
tension force in the x direction must therefore be equal in al parts of the rope. Y ou may look
at it like this; the rope will simply keep changing its shape until this condition is met. An

other important thing to notice is that at point O thereisno tension in the y direction, the
tangent to the curve is 0. Therefore the tension in this point does not contribute to lifting the
rope, so it should be obvious that the tension force in they direction in any point P on the rope




must be responsible for lifting the entire mass of the rope segment extending from point O to

point P. This gives us the formula:
Fy=r99

Of coursegisthe gravitational acceleration constant. This formula must hold for any point P

on the rope which is separated by an arc lengthsfrom O. From simple calculus we know that
the arc length of aline segment extending from x=a to x=Db can be calculated using

S= I:1/1+ y”dx (see notes at bottom of the document) combining this with (2) gives

Fy= p.gj'\/l+ y*? dx which combined with (1) resultsin the differential equation:
0

a1+ yZax=y'with p= 29| (3)
0

Fx
After first differentiating, then squaring followed by some shifting this leads to:
Yy -plyt= 1| (4
At first thismight look a bit difficult to solve, but « is a constant and might also be one. In
which case the equation becomes quite easy. y'“—y“=1, now if we choose the function such
that y'= sinh(x) = y''= cosh(x) our equation becomes cosh?®(x)—sinh?(x)=1 which is always
true. So if u equals one the function y = cosh(x + @)+ c isavalid solution. Well, let’s see if
we can get thisworking for other values of 1 by making the solution a little more general like
y = a.cosh(B.x+¢)+c. If this function is the solution we might as well assume that ¢ =0
since cosh(x) hasits minimum at x = 0 which is exactly what we chose for our rope. The
differential equation (4) now becomes o * cosh?(8.x)—a? % u? sinh?(4.x) = 1> which can
only betrueif o®p* = a’p*u* = B = u* because we need a common factor in order to get a
constant outcome. We now have a2y4(COS|12(,H.X)—Sinhz(ﬂ.x)): ut=pP=a’=u?
this means that the function will be asolution if and only if f=+u A a =+x". It doesn't
matter which sign we choose for £ because the function is symmetrical in they axis, so let’s
choose it positive. From the shape of the curve we can see that « must be positive for a
hanging rope so al things combined give us the solutiony = 2 cosh(u.x) + ¢. Having
choseny=0 at x=0 and after expanding « we find our final solution.
y= ﬂc:osh(p—'g x] S (5)
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This curveis often called a catenary.

Well we have the curve, but isn't it odd that the curve seems dependent on the density of the
wire? Our (or at least mine) intuition tells us that it shouldn’t be. Let’s have a closer |ook.
We will use u again as defined in (3). Now we will examine a point P with coordinates (d, h)
at which the rope isfixed. Thesin formula (2) is the length of the rope between points O and
P, solet’scall itLinstead. From (5) wesee h= g *cosh(u.d)— = ph+1=cosh(xd).
Now from (1), (2), (5) it followsthat Fy = p.g.L = Fx.y'= Fxsinh(z.d)= L =sinh(ud).
But, thismeansthat (z.h+1)° — (z.L)* =1 since cosh?(x.d)—sinh?(x.d)=1. Solving this

2h

equation easily gives us M= T (6)




So the curve isindeed independent of the density of the rope since we can determine
u from L and h without any density or mass property of the rope.

2 2 2 B2
(5) becomes: y= L 2hh cosh( Lzz_hhz xj L 2hh (7) for the curve of the rope
between points O and P.
2 12 2 12
Finally using (6) we can write h= L 2hh cosh( Lzzhhz dj L 2hh so after some agony we

L? —h? L* +h? : :
get d = on acosh| ——— | which after some more struggle can also be written as:

L2 —h?
L>-h?> (L+h
d= In
2h (L—h] (8)

This gives us the means to calculated from handL . To my knowledge there is no algebraic
way to calculateL fromd andh, or hfromd and L . These calculations have to be done

numerically.

A list of theforcesin P:

2 2 : :
Fx=ﬂg(LT_h), Fy = Fxsinh(xd)=p.gL, Fs= FX'COSh(”'d)z%hth)

See next page for example of a rope attached between to points of unequal heights.



Rope attached between to 2 points of unequal heights.

In the drawing above you can see arope fixed a 2 ends p, and p,with different heights. In
thisdrawing h representsthe height of p, above the lowest point of the curve. If we call d
the horizontal distance between points p, and p, you can seethat d = x, + x, and if the total

length of theropeiscalled L it followsthat L =L, + 2L,. Also a isthe height difference
between the points.

Let'swrite (5) againasy = u ™" cosh(y.x) — 1" Applied on the drawing above this gives us
a =y (cosh(u.x,)— cosh(u.x)) = 2u s nh(@jg nh(@j .Also

L, = u~(sinh(.x,) - sinh(u.x, ) = Zylgnh(@j cosh(wj . After dividing

these 2 and substituting « using (6) it follows that:

a__a _ tmh(wj — tanh(ﬂ—'dj - tanh(&j (9)
L, L-2L, 2 2 L’ —h?

From (6) it also followsthat ;= —20_ - 2h+a)

L°-h* (L-L)f-(h+a)

5 . Solving this equation for L,

Gives us: L =—— (10).

Asyou can see this equation has 2 solutions, the + sign should be chosen *-* if the lowest
fixed point is left of the Y axis (P,) and *+' if this point isright of the Y axis (R).

To determine on which side of the Y axis the lowest fixed point is located we can use (8).
" Lz—azln[L+a

2a

j >d the point islocated on the |eft side and we should use the - sign.



Substituting L, from (10) into (9) gives:

(11)
(®—a%)-(a+2h)+2L-4/h-(a+h)-(2-a?) a’

d= 2 'amanh{L.(a+2h)i2Jh-(a+h)-('-z—az)

Again the + sign before each root should be chosen negative if the lowest fixed point is left
of the Y axisand positiveif it ison theright side of the Y axis.

Example 1:

The simplest example will be one where we need to calculate the required distance between
two fixed pointsif the length of the rope and the height of all points are known, this can be
done using asimple calculator. Let’s assume we have 2 poles with heights h, =10m and
h, =15m, we have arope with alength of L =30m and we want the deepest point of the
rope to be 8m above ground. The deepest point above ground is of course h, —h sothe h in
our equation is h=10m-8m=2m. Now all we need to do isfill in the known valuesin
equation (11), thisgives us (using ‘- for the + sign):
875-9—60-\/2-7~875_atanh( 25

25 30-9-24/2-7-875
parameters of the catenary using the formulas in this document. Using (10) we calculate

L, =10.14, u=22—h2=0.0405. xlz—as'”h(”' L)
L°-h 7

horizontal distance from the deepest point to the lowest pole. The catenary curve becomes:

d=

j:28.05. We can now find all

=9.87m wherex, represents the

y = cosh(u- X— - %)+ k= y=24.7-cosh(0.0405- x — 0.400)—16.7

Where y isthe height of the rope above ground and x is the distance from the lowest pole in
the direction of the higher pole. Sinceat x=0, y=h, it'sobviousthat k=h —h—z™".

Example 2:
In aphysical situation where the length of the rope, the horizontal distance between the points
and the height of the pointsis know, (11) gives us one equation with one unknown, h which
can only be solved numerically. Let’ s assume we have two poles at adistance of d =20m
from each other, the poles have heights of h, =10m and h, =15m, between the poles hangs a
rope with alength of L =28m. Now let’s calculate the curve of the rope. The lowest fixed
point isleft of the Y axissoweuse ‘-* in equation (11) to get:

759-(5+ 2h)-2L - h-(5+h)-759'at 25

25 28-(5+2h)—2,/h-(5+h)- 759
solve h from this equation numerically (using any suited program, see |ast page of document
for a C example program), it turns out h=6.21m. Having calculated h we can easily find all

parameters required for the catenary curve.
L, =11.2m, i = 0.143, x, = 8.74m, deepest point ish, — h = 3.79m above the ground. The

catenary curve as seen from the lowest pole becomes:

20= j,we now

y = 1 cosh(u.x— 1. )+ k = y = 6.99c0sh(0.143x — 1.25) — 3.2




Example 3:

Example for a curve with the lowest fixed point on the right side of the Y axis. Given the
valuesfor h, =10m,h, =20m,d =11m and L =15m. We numerically solve h from (11)
(Note that we should use ‘+' now for each + in the equation):
_125:(10+2h)+30-yh-(10+h)-125 _ 100 this

200 15-(10+ 2h)+2,/h-(10+h)-125
gives us h=2.17. So therelevant variablesare: L, =-9.0m, 4 =0.057, x, =—-8.65m. The
curve for this catenary as seen from the lowest pole (note the lowest point is of course
h, =10m) becomes:

11

y = 1 cosh(z.x— p.x )+ k = y =17.6cosh(0.057x + 0.49) - 9.75

Asyou can seein thisexample L, < 0. Physically thismeansthat L, in our equationsis now
represented by the entire length of the ropein the drawing and L in our equationsis
represented by L, in the drawing (which is of course exactly what we wanted).

Example 4.
Finally we can aso have a situation where the distance between two fixed points, say
d =30m, aswell as the height of each point, say h =12m and h, =18m , isknown and we

require the lowest point of the rope to be at 8m, h, —h=8m= h=4m. We want to know the

length of the rope needed to satisfy these requirements. Again we use (11) to get:

30= (1 -36)-14-2L. V40'(L2_36)-atanh 36 . Numerically solving
36 L-14-2,/40-(L2 -36)

this equation gives L =34.12m, so L, =12.66m, x = 0.0555, x, =11.8m. The catenary curve

becomes:

y = " cosh(u.x— 1. )+ k = y =18cosh(0.0555x — 0.654) — 10

Again x isthe distance from the lowest pole in the direction of the higher pole, y isthe height
above the ground.
Some notes:

X X
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atanh(x) = %In(“—xj

By definition: cosh(x) = T x

Toseethat s= I:w/1+ y?dx consider the method below. Wheredsis an infinitesimally small

piece of the curve in which the tangent is % . Not exactly the proper way, | admit but | assure

2
youitworks.  |ds=+/dX*+dy’ = s= j\/dxz +dy? =j 1+ (%j dx :I 1+ y?dx

This document was written by Ruud v Gessel April 2001. And modified October 2007. If there
are any errorsin the doc or you have any remarks regarding its contents you may contact me.


mailto:dobbelbeker@chello.nl?subject=Catenary%20document

Small C program to numerically calculate L or h from (11) usngMSVC

#include "stdafx.h"
#include "math.h"

#define MAXERR 1e-10 /I Absolute precision of calculation
#define MAXIT 100 /I Maximum iterations (will never reach 100 unless an error has occurred)
#define TV ((upper+lower)/2) /I Test valuefor our iteration routines, gives the middle of the solution range

double atanh(double x) // Not defined in math library arctanh

{
return 0.5*1og((1+x)/(1-x)); /I Return atanh(x)

}

double Calc_D(double a, double L, double h, double sgn) /I Calculatesd from equation 11
double g=2* sgn* sgrt(h* (a+h)* (L*L-a* d)); /I + or - 2* theroot used in (11)
return ((L*L-a*a)* (a+2*h)-L*g)/(a* a)* atanh(a* a/(L* (a+2* h)-q)); // return calculated d from eq (11)

}

double Solve_h(double a, double L, double d) / Routineto solveh from a, L and d

{
int n=1; /I Iteration counter (quit if >MAXIT)
double s=((L*L-a*a)/(2* a)*log((L+a)/(L-a))<d) ?-1:1; I/l Left or right of Y axis ?
double lower=0, upper=(L-a)/2; // h must be within this range
while((upper-lower) > MAXERR && (++n)<MAXIT) // Until range narrow enough or MAXIT

if(Calc_D(aL,TV,9)*s<d*s) upper=TV; else lower=TV, /I Narrow the range of possible h

printf("Found h=%3.10f after %d iterations.\n\r", TV ,n); /'1f you see 100 iterations =» error
return s*TV; /I Returns h (- signalsright of Y axis)

}

double Solve L (double a, double h, double d) /l Routineto solve L from a, h and d

{
int n=1; /I Iteration counter (quit if >MAXIT)
double lower=sgrt((d* d+a* a)), upper=2*h+d+a; /I L must be within this range
while((upper-lower) > MAXERR && (++n)<MAXIT) // Until range narrow enough or MAXIT

if(Calc_D(a,TV,h,1)>d) upper=TV; else lower=TV; /I Narrow the range of possible L

printf("Found L=%3.10f after %d iterations.\n\r", TV n); /1 1f you see 100 iterations =» error
return TV; Il Returns L

}

int main(int argc, char* argv[])
h=Solve h(5,28,20); /I Values from example 2
h=Solve h(10,15,11); /I Values from example 3
L=Solve L(6,4,30); /I Values from example 4
return O;

Y ou can download the sources of the example here




