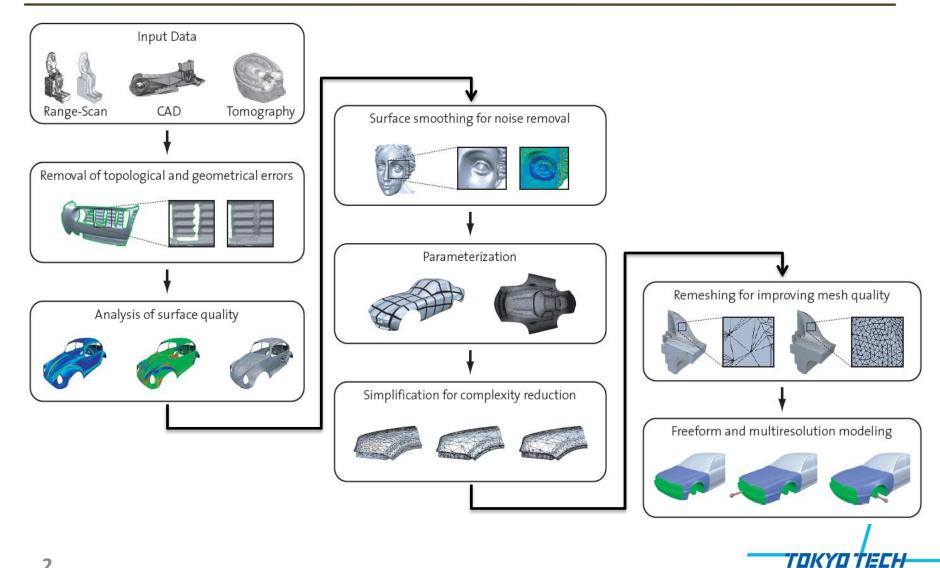
3D Shape Analysis II. Basic notions

Hamid Laga

Global Edge Institute, Tokyo Institute of Technology

hamid@img.cs.titech.ac.jp http://www.img.cs.titech.ac.jp/~hamid/

Geometry processing pipeline



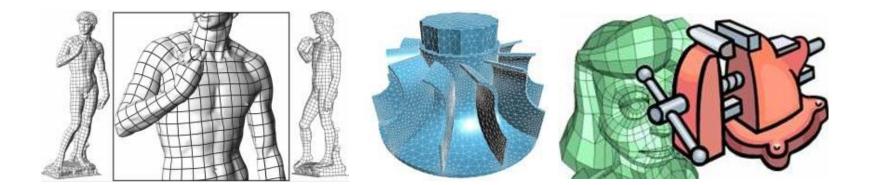
Pursuing Excellence

Part II: Basic notions

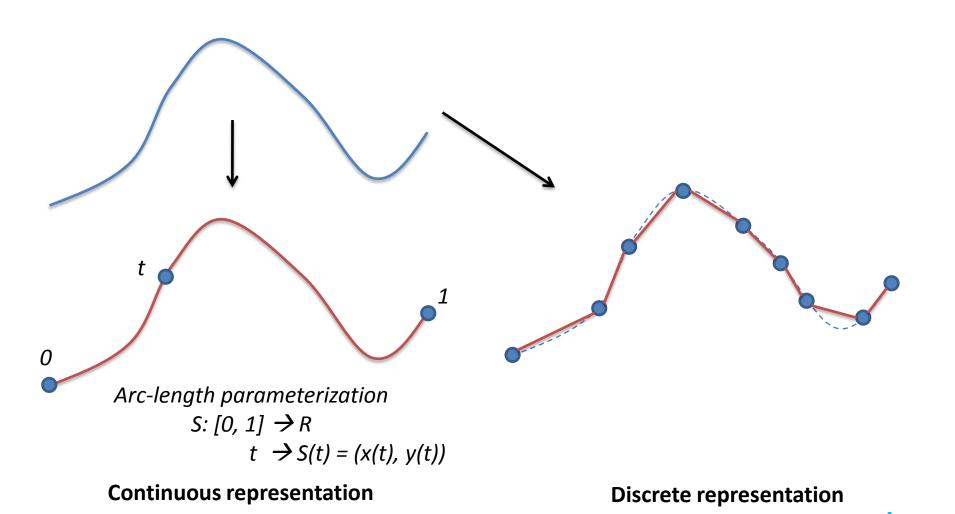
- 3D shape representations
 - Discrete representations
 - (Piecewise) Continuous representations
- Discrete differential geometry (DDG)
 - Differential properties (normals, curvatures, tensors)
 - Local surface analysis
- Application
 - Ridge-valley lines on meshes

Shape representations

- Computerized representation of 3D geometry
- Discrete representations
 - Triangular mesh
 - Polygon soup models



1D Curve

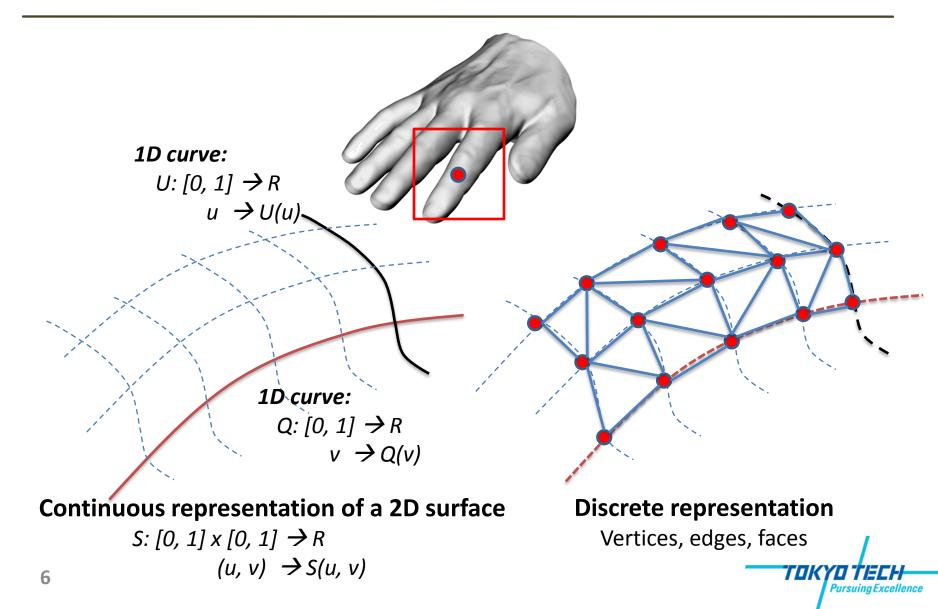


ΤΟΚ

10

Pursuing Excellence

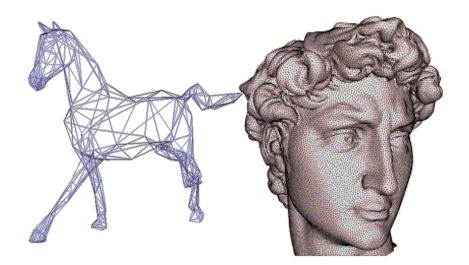
Surface in 3D space



The simplest representation

- Polygon set:
 - List of vertices (3D coordinates)
 - List of faces

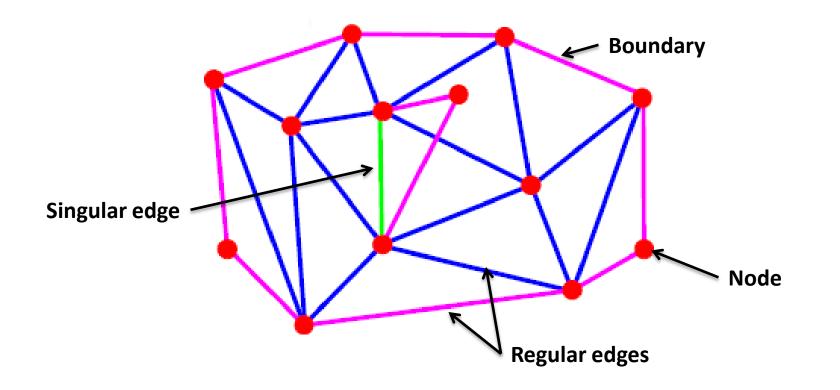




Polygons (vertices + faces)

Triangular polygon representation

• Straight-line graph embedded in R³



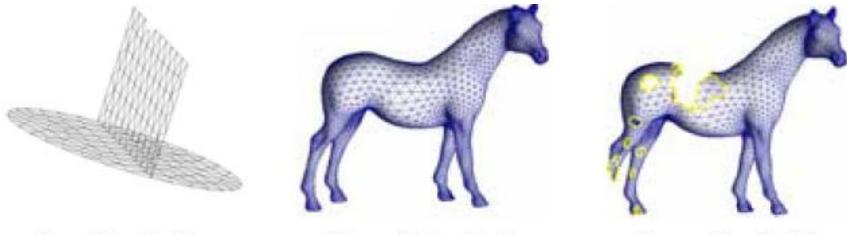
Pursuina Excellence

8

Manifold mesh

No singular edges

- Each edge has at maximum two adjacent faces
- Faces intersect only in edges (no self intersections)



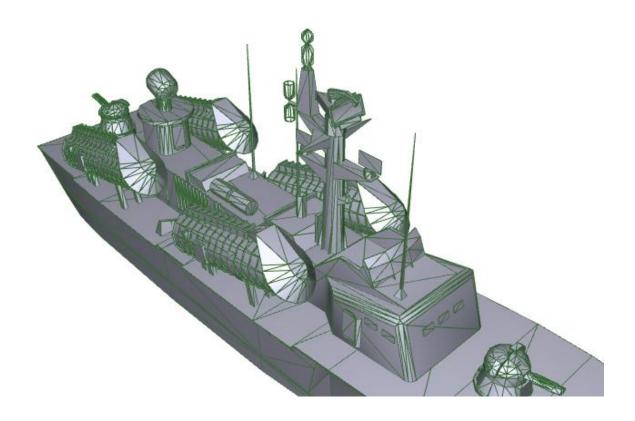
Non-Manifold

Closed Manifold

Open Manifold

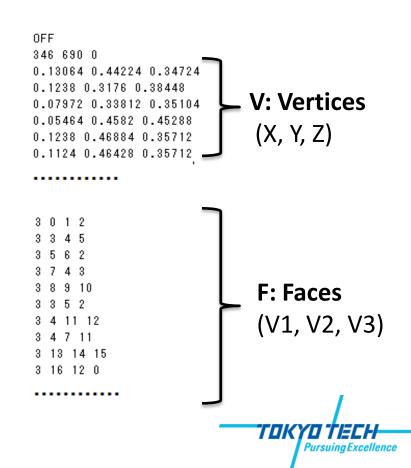
Polygon soup model

No restriction on how polygons are put together



Example II.1

Mesh smoothing

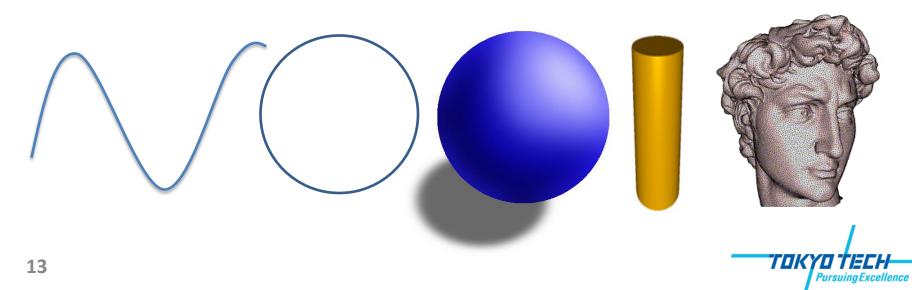


Part II: Basic notions

- 3D shape representations
 - Discrete representations
 - (Piecewise) Continuous representations
- Discrete differential geometry (DDG)
 - Differential properties (normals, curvatures, tensors)
 - Local surface analysis
- Multiscale, multiresolution analysis

Continuous representation of shapes

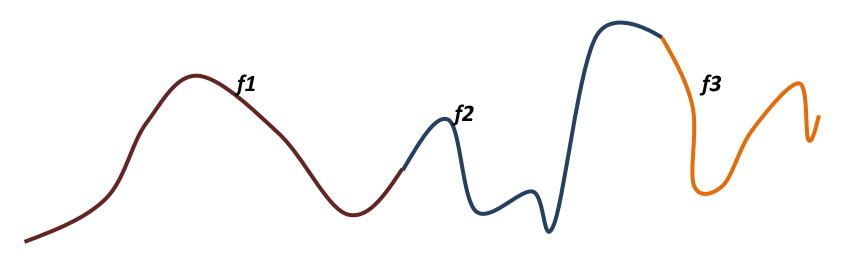
- Basic geometric shapes
 - Can be easily represented with a single equation
- Complex shapes
 - Local approximation
 - Represent the surface locally with continuous functions



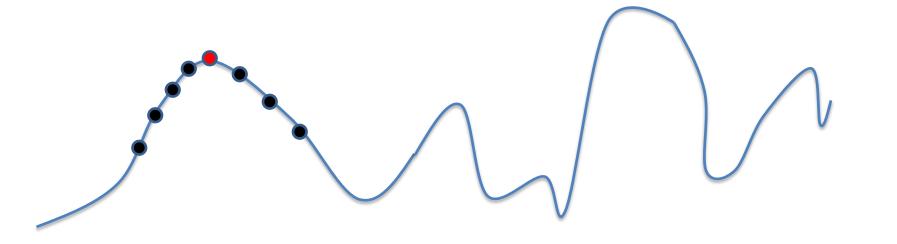
• Complex curves cannot be represented with a single function with sufficient accuracy

Complex curve

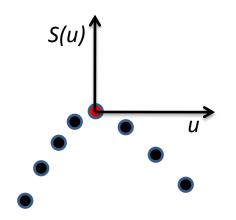
- Complex curves cannot be represented with a single function with sufficient accuracy
 - Partition the curve into pieces
 - Represent each piece with a function (polynomial)



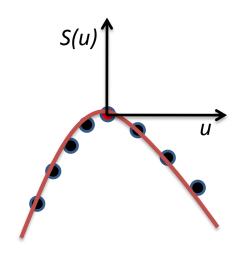
- Complex curves cannot be represented with a single function with sufficient accuracy
 - Local approximation



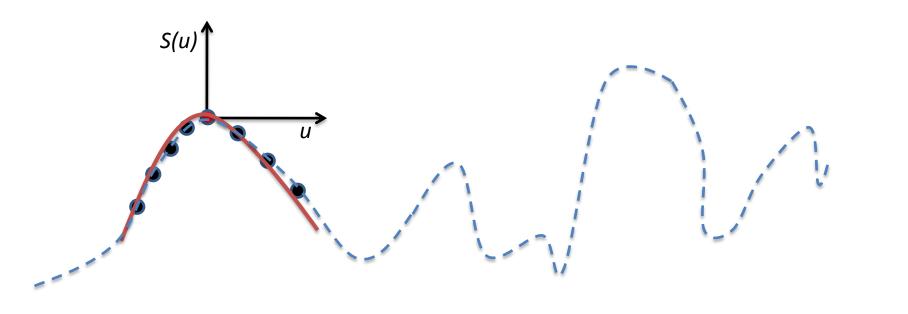
- Complex curves cannot be represented with a single function with sufficient accuracy
 - Local approximation



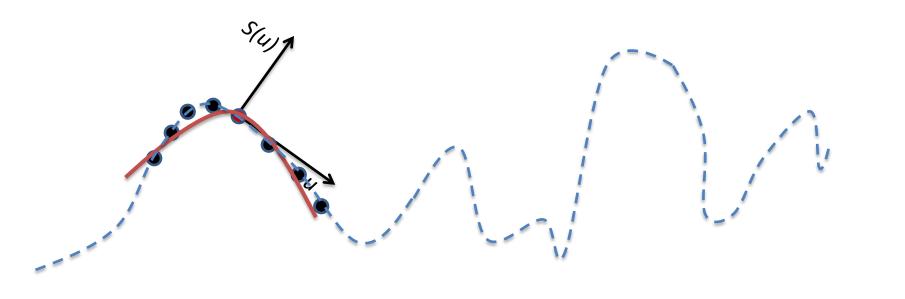
- Complex curves cannot be represented with a single function with sufficient accuracy
 - Local approximation



- Complex curves cannot be represented with a single function with sufficient accuracy
 - Local approximation



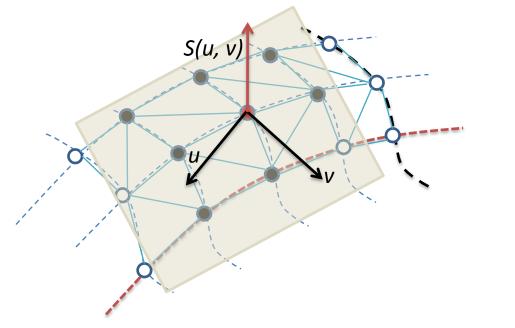
- Complex curves cannot be represented with a single function with sufficient accuracy
 - Local approximation



How about surfaces

- At each vertex
 - Build local coordinate system (u,v)
 - Collect N neighbor vertices
 - Fit a polynomial patch

$$S(u,v) = a_0 + a_1u + a_2v + a_3u^2 + a_4uv + a_5v^2$$



IU

Pursuina Excellence

From mesh to piecewise continuous

- Quadric polynomial fitting
 - Collect at least 6 vertices p_i , i=1...6
 - Represent them in local coordinate frame
 - $p_i = (u_i, v_i, S(u_i, v_i))$
 - Fit the quadric by minimizing the Mean Least
 Square (MLS) error

$$S(u_1, v_1) = a_0 + a_1 u_1 + a_2 v_1 + a_3 u_1^2 + a_4 u_1 v_1 + a_5 v_1^2$$

$$S(u_1, v_1) = a_0 + a_1 u_2 + a_2 v_2 + a_3 u_2^2 + a_4 u_2 v_2 + a_5 v_2^2$$

...

$$S(u_n, v_n) = a_0 + a_1 u_n + a_2 v_n + a_3 u_n^2 + a_4 u_n v_n + a_5 v_n^2$$

From mesh to piecewise continuous

Г

ΙЦК

Quadric polynomial fitting

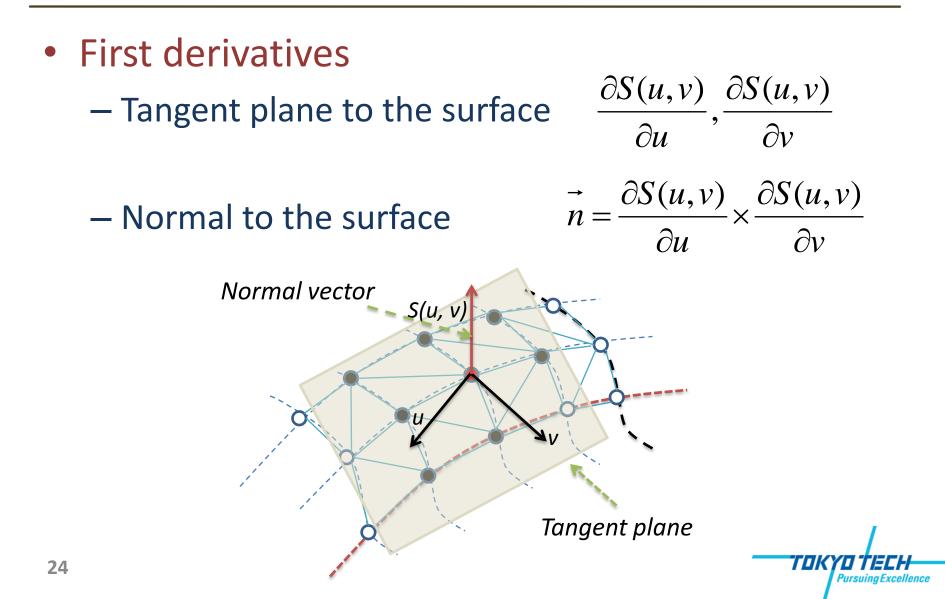
$$\begin{bmatrix} S(u_{1}, v_{1}) \\ S(u_{2}, v_{2}) \\ \cdots \\ S(u_{n}, v_{n}) \end{bmatrix} = \begin{bmatrix} 1 & u_{1} & v_{1} & u_{1}^{2} & u_{1}v_{1} & v_{1}^{2} \\ 1 & u_{2} & v_{2} & u_{2}^{2} & u_{2}v_{2} & v_{2}^{2} \\ \cdots & & & & \\ 1 & u_{n} & v_{n} & u_{n}^{2} & u_{n}v_{n} & v_{n}^{2} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \\ a_{0} \\ a_{5} \end{bmatrix}$$

$$\mathbf{b} \qquad \mathbf{M} \qquad \mathbf{X}$$

$$b = MX$$

$$X = (M^{t}M)^{-1}M^{t}b$$

Why do we need the piecewise continuous ?



Why do we need the piecewise continuous ?

- Second derivatives
 - Related to the surface curvature (we will see it soon)

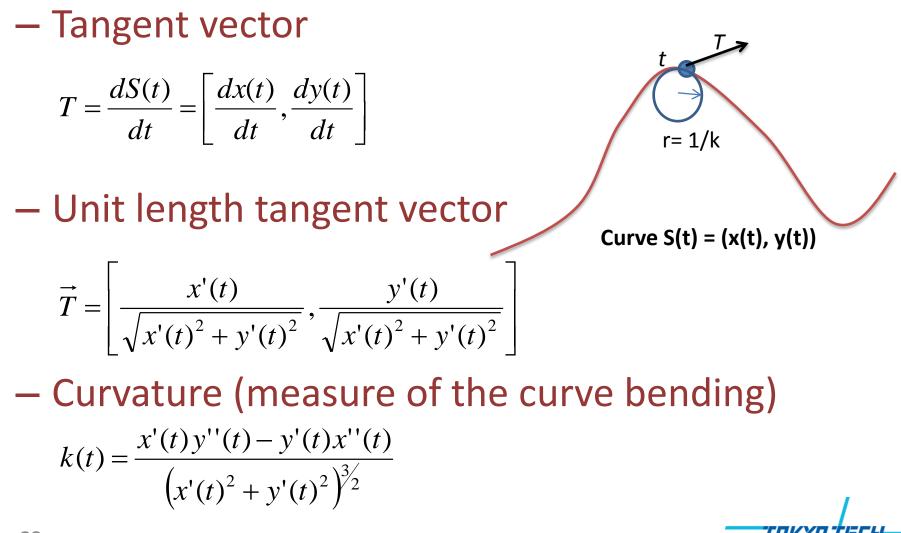
Example II.2

• Polynomial fitting

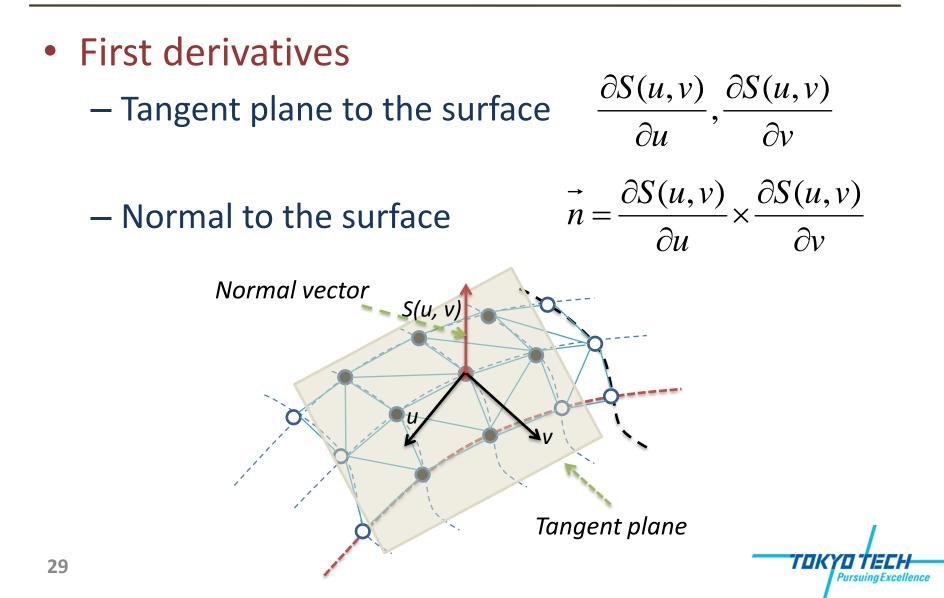
Part II: Basic notions

- 3D shape representations
 - Discrete representations
 - (Piecewise) Continuous representations
- Discrete differential geometry (DDG)
 - Differential properties (normals, curvatures, tensors)
 - Local surface analysis
- Multiscale, multiresolution analysis

Curves

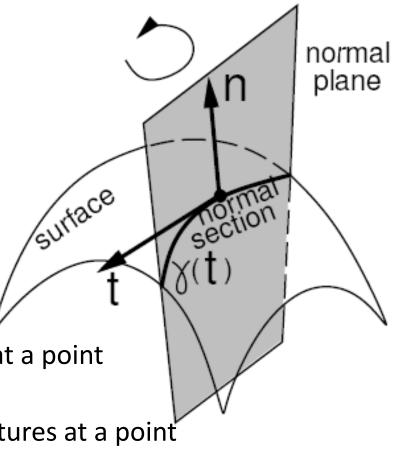


Why do we need the piecewise continuous ?



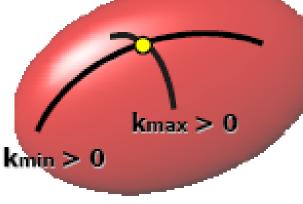
Curvatures

- Normal curvature
 - Curvature of the normal section
 - − There are many normal sections
 → normal curvature is not unique
- Principal curvatures
 - Minimum curvature
 - Min of normal curvatures at a point
 - Maximum curvature
 - Maximum of normal curvatures at a point



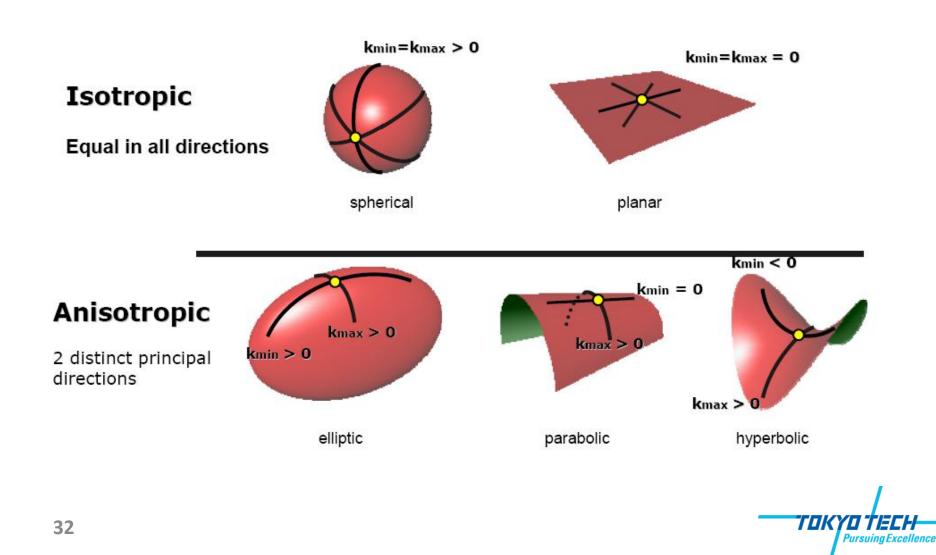
Curvatures

- Principal curvatures (Kmin, Kmax)
 - Minimum (Kmin) and maximum of the normal curvatures at a point
- Principal directions
 - Two orthogonal tangential directions

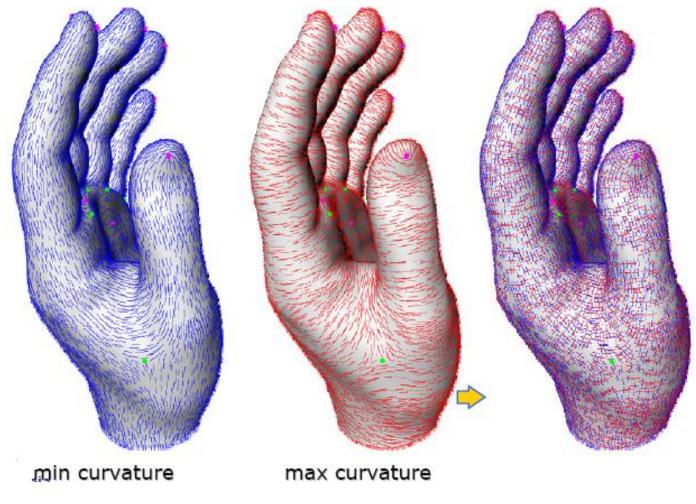


Correspond to min / max curvatures

Curvature analysis



Principal directions of curvature



Curvature analysis

- Curvature analysis for local shape understanding
 - Kmin = kmax > $0 \rightarrow$ sphere
 - − Kmin = Kmax = 0 \rightarrow planar
 - Kmin > o, Kmax > 0 \rightarrow elliptic
 - Kmin = 0, Kmax > 0 \rightarrow parabolic (ex. cyllindric surface)
 - Kmin <0, Kmax > 0 \rightarrow hyperbolic surface
- For global shape understanding
 - Analyze the distribution of the curvature (histogram)

Other curvatures

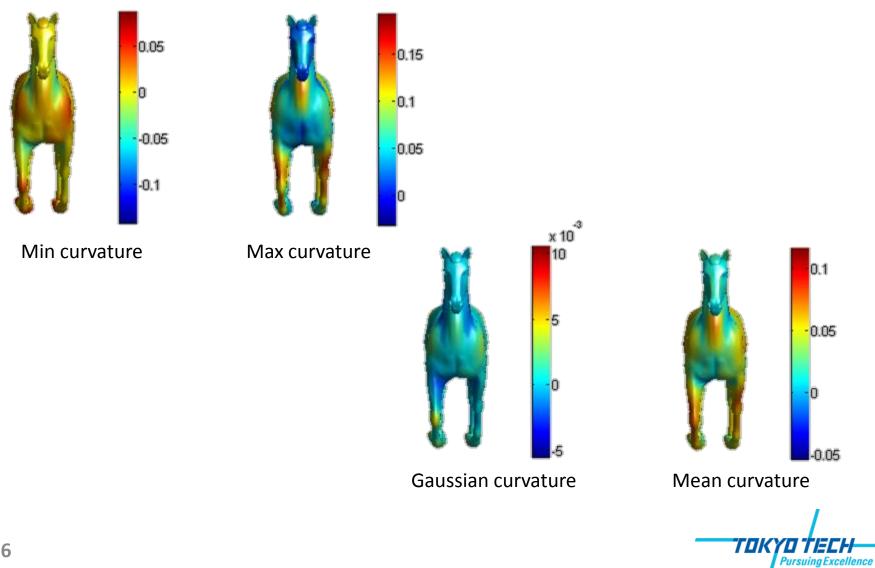
– Gaussian curvature

$$K = K_{\min} K_{\max}$$

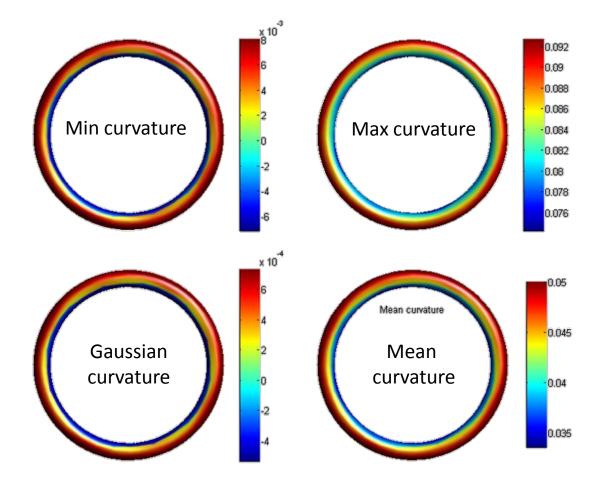
Mean curvature

$$H = \frac{1}{2}(K_{\min} + K_{\max})$$

Examples



Examples



Normal estimation on mesh

- Option1

- Average face normals around a vertex
- Problem:
 - Does not reflect face "influence"

Normal estimation on mesh

- Option2

- Weighted average face normals around a vertex
 - Use face area or angles at vertex

Normal estimation on mesh

- Option3

- Estimate the tangent plane and take the normal to that
 - Center the data: vertex + its neighbors
 - Compute covariance matrix
 - Tangent plane spanned by the two largest eigenvectors of the covariance matrix
 - Normal is the eigenvector with smallest eigenvalue
 - What about the orientation ?

Practical (efficient) curvature estimation

- Quadratic approximation $S(u,v) = au^2 + buv + cv^2$
- Principal curvatures kmin and kmax are real roots of:

$$k^2 - (a - c)k + ac - b^2 = 0$$

- Mean curvature $H = \frac{1}{2}(K_{\min} + K_{\max})$
- Gaussian curvature $K = K_{\min} K_{\max}$

Curvature tensors

• Quadratic approximation $S(u,v) = au^2 + buv + cv^2$

 \mathcal{A}

n

С

- **Given: t**: a unit tangential direction of coord. (u, v)
- We want: the normal curvature kt in direction t ?
- The second fundamental form II =

(Called also curvature tensor)

Normal curvature

$$k_t = \begin{bmatrix} u & v \end{bmatrix} H \begin{bmatrix} u \\ v \end{bmatrix}$$

Curvature tensors

• Exact tensor formula

$$II = \begin{bmatrix} \vec{\partial n} \neq & \vec{\partial n} \neq \\ \vec{\partial u} & \vec{\partial v} \\ \vec{\partial u} & \vec{\partial v} \\ \vec{\partial n} \neq & \vec{\partial n} \neq \\ \vec{\partial u} & \vec{v} & \vec{\partial v} \end{bmatrix}$$

- Principal curvatures (kmin, kmax):
 - Eigenvalues of II
- Principal directions
 - Eigenvectors

Application of curvature analysis

Ridge and valley detection

Application of curvature analysis

- Ridge and valley detection
 - Given
 - Principal curvatures k_{min}, k_{max}
 - Their associated principal directions t_{min}, t_{max}
 - The curvature derivatives along the principal directions

$$e_{\max} = \partial k_{\max} / \partial \mathbf{t}_{\max}$$
 $e_{\min} = \partial k_{\min} / \partial \mathbf{t}_{\min}$

$$e_{\max} = 0, \quad \partial e_{\max} / \partial \mathbf{t}_{\max} < 0, \quad k_{\max} > |k_{\min}|, \quad \text{(ridges)}$$
$$e_{\min} = 0, \quad \partial e_{\min} / \partial \mathbf{t}_{\min} > 0, \quad k_{\min} < -|k_{\max}| \quad \text{(valleys)}$$

s).

Summary

- Triangular mesh representation
 - The most flexible
 - Can be used for rendering, geometry processing, shape analysis
- Differential properties
 - Curvature analysis very useful for local (and global) shape understanding

References

- Efficient differential properties estimation
 - Szymon Rusinkiewicz.
 Estimating Curvatures and Their Derivatives on Triangle Meshes
 - Pierre Alliez et al.
 Anisotropic Polygonal Remeshing. In ACM Transactions on Graphics, 2003.
 - Gabriel Taubin.
 Estimating the tensor of curvature of a surface from a polyhedral approximation.
- Applications
 - Yutaka Ohtake , Alexander Belyaev, Hans-Peter Seidel.
 Ridge-Valley Lines on Meshes via Implicit Surface Fitting. ACM Trans. Graphics 2004
- Similar courses
 - Craig Gotsman course on DGP: <u>http://www.cs.technion.ac.il/~cs236329</u>
 - Alla Sheffer course on Geometric Modeling http://www.ugrad.cs.ubc.ca/~cs424/
 - Siggraph 2007 and Eurographics 2006 course on Geometry Processing using polygonal meshes: <u>http://www.agg.ethz.ch/publications/course_notes</u>

Mesh processing libraries

- CGAL:

- Computational Geometry Algorithms Library (Linux, Windows)
 <u>http://www.cgal.org</u>
- OpenMesh
 - Efficient Half-Edge structures for polygonal meshes
 <u>http://www.openmesh.org</u>
- MeshMaker
 - <u>http://www.cs.ubc.ca/~sheffa/dgp/software/MeshMaker5.2.zip</u>
- Graphite:
 - Powerful but no documentation: <u>http://alice.loria.fr/software/graphite/</u>

Backup slides

