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Geometry processing pipeline
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Part II: Basic notions

• 3D shape representations
– Discrete representations
– (Piecewise) Continuous representations

• Discrete differential geometry (DDG)
– Differential properties 

(normals, curvatures, tensors)

– Local surface analysis

• Application
– Ridge-valley lines on meshes
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Shape representations

• Computerized representation of 3D geometry

• Discrete representations

– Triangular mesh

– Polygon soup models
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1D Curve
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Continuous representation Discrete representation

Arc-length parameterization
S: [0, 1]  R

t   S(t) = (x(t), y(t))

0

t
1



1D curve:
U: [0, 1]  R

u   U(u)

1D curve:
Q: [0, 1]  R

v   Q(v)

Continuous representation of a 2D surface
S: [0, 1] x [0, 1]  R

(u, v)   S(u, v)

Surface in 3D space 
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Discrete representation
Vertices, edges, faces



The simplest representation

• Polygon set:

– List of vertices (3D coordinates)

– List of faces

Polygons (vertices + faces)
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Triangular polygon representation

• Straight-line graph embedded in R3

Boundary

Node

Regular edges

Singular edge
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Manifold mesh

– No singular edges

– Each edge has at maximum two adjacent faces

– Faces intersect only in edges (no self intersections)
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Polygon soup model

– No restriction on how polygons are put 
together
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Example II.1

• Mesh smoothing
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V: Vertices
(X, Y, Z)

F: Faces 
(V1, V2, V3)



Part II: Basic notions

• 3D shape representations
– Discrete representations

– (Piecewise) Continuous representations

• Discrete differential geometry (DDG)

– Differential properties 
(normals, curvatures, tensors)

– Local surface analysis

• Multiscale, multiresolution analysis
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Continuous representation of shapes

• Basic geometric shapes

– Can be easily represented with a single equation

• Complex shapes

– Local approximation

• Represent the surface locally with continuous functions
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1D Curve: piecewise continuous

• Complex curves cannot be represented with a 
single function with sufficient accuracy
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Complex curve



1D curve: piecewise continuous

• Complex curves cannot be represented with a 
single function with sufficient accuracy

– Partition the curve into pieces

– Represent each piece with a function (polynomial)

f1
f2

f3
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1D curve: piecewise continuous

• Complex curves cannot be represented with a 
single function with sufficient accuracy

– Local approximation
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1D curve: piecewise continuous

• Complex curves cannot be represented with a 
single function with sufficient accuracy

– Local approximation
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u

S(u)



1D curve: piecewise continuous

• Complex curves cannot be represented with a 
single function with sufficient accuracy

– Local approximation
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u

S(u)

1D curve: piecewise continuous

• Complex curves cannot be represented with a 
single function with sufficient accuracy

– Local approximation

19



• Complex curves cannot be represented with a 
single function with sufficient accuracy

– Local approximation

1D curve: piecewise continuous
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How about surfaces

• At each vertex

– Build local coordinate system (u,v)

– Collect N neighbor vertices

– Fit a polynomial patch
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From mesh to piecewise continuous

• Quadric polynomial fitting

– Collect at least 6 vertices pi, i=1…6

– Represent them in local coordinate frame

• pi = (ui, vi, S(ui, vi))

– Fit the quadric by minimizing the Mean Least 
Square (MLS) error 
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From mesh to piecewise continuous

• Quadric polynomial fitting
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Why do we need the piecewise continuous ?

• First derivatives

– Tangent plane to the surface

– Normal to the surface
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Why do we need the piecewise continuous ?

• Second derivatives

– Related to the surface curvature
(we will see it soon)
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Example II.2

• Polynomial fitting
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Part II: Basic notions

• 3D shape representations
– Discrete representations

– (Piecewise) Continuous representations

• Discrete differential geometry (DDG)

– Differential properties 
(normals, curvatures, tensors)

– Local surface analysis

• Multiscale, multiresolution analysis
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Curves

– Tangent vector

– Unit length tangent vector

– Curvature (measure of the curve bending)

28

Curve S(t) = (x(t), y(t))

t

r= 1/k
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Why do we need the piecewise continuous ?

• First derivatives

– Tangent plane to the surface

– Normal to the surface
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Curvatures
• Normal curvature

– Curvature of the normal 
section

– There are many normal 
sections
 normal curvature is
not unique

• Principal curvatures
– Minimum curvature

• Min of normal curvatures at a point

– Maximum curvature
• Maximum of normal curvatures at a point
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Curvatures

• Principal curvatures (Kmin, Kmax)

– Minimum (Kmin) and maximum
of the normal curvatures 
at a point

• Principal directions

– Two orthogonal tangential
directions

– Correspond to min / max curvatures
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Curvature analysis
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Principal directions of curvature

33



Curvature analysis

– Curvature analysis for local shape understanding

– Kmin = kmax > 0 sphere

– Kmin = Kmax = 0  planar

– Kmin > o, Kmax > 0 elliptic

– Kmin = 0, Kmax > 0 parabolic (ex. cyllindric surface)

– Kmin <0, Kmax > 0 hyperbolic surface

• For global shape understanding

– Analyze the distribution of the curvature (histogram)
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Other curvatures

– Gaussian curvature

– Mean curvature
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Examples
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Min curvature Max curvature

Gaussian curvature Mean curvature



Examples
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Min curvature Max curvature

Gaussian
curvature

Mean 
curvature



Normal estimation on mesh

– Option1

– Average face normals around a vertex

– Problem:

• Does not reflect face “influence”
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Normal estimation on mesh

– Option2

– Weighted average face normals around a vertex

• Use  face area or angles at vertex
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Normal estimation on mesh

– Option3

– Estimate the tangent plane and take the normal to 
that

• Center the data: vertex + its neighbors

• Compute covariance matrix

• Tangent plane spanned by the two largest eigenvectors 
of the covariance matrix

• Normal is the eigenvector with smallest eigenvalue
– What about the orientation ?
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Practical (efficient) curvature estimation

• Quadratic approximation

• Principal curvatures kmin and kmax are real roots of:

• Mean curvature

• Gaussian curvature
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Curvature tensors

• Quadratic approximation 

• Given: t: a unit tangential direction of coord. (u, v)

• We want: the normal curvature kt in direction t ?

• The second fundamental form

– (Called also curvature tensor)

• Normal curvature
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Curvature tensors

• Exact tensor formula

• Principal curvatures (kmin, kmax):

– Eigenvalues of II

• Principal directions

– Eigenvectors
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Application of curvature analysis

– Ridge and valley detection
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Application of curvature analysis

– Ridge and valley detection

– Given

• Principal curvatures kmin, kmax

• Their associated principal directions
tmin, tmax

• The curvature derivatives along the 
principal directions

45



Summary

• Triangular mesh representation

– The most flexible

– Can be used for rendering, geometry processing, 
shape analysis

• Differential properties

– Curvature analysis very useful for local (and 
global) shape understanding
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References
– Efficient differential properties estimation

– Szymon Rusinkiewicz. 
Estimating Curvatures and Their Derivatives on Triangle Meshes

– Pierre Alliez et al. 
Anisotropic Polygonal Remeshing. In ACM Transactions on Graphics, 2003.

– Gabriel Taubin. 
Estimating the tensor of curvature of a surface from a polyhedral approximation.

• Applications
– Yutaka Ohtake , Alexander Belyaev, Hans-Peter Seidel. 

Ridge-Valley Lines on Meshes via Implicit Surface Fitting. ACM Trans. Graphics 2004

• Similar courses
– Craig Gotsman course on DGP: http://www.cs.technion.ac.il/~cs236329

– Alla Sheffer course on Geometric Modeling http://www.ugrad.cs.ubc.ca/~cs424/

– Siggraph 2007 and Eurographics 2006 course on Geometry Processing using 
polygonal meshes: http://www.agg.ethz.ch/publications/course_notes
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Mesh processing libraries

– CGAL:

– Computational Geometry Algorithms Library (Linux, Windows)
http://www.cgal.org

• OpenMesh

– Efficient Half-Edge structures for polygonal meshes
http://www.openmesh.org

• MeshMaker

– http://www.cs.ubc.ca/~sheffa/dgp/software/MeshMaker5.2.zip

• Graphite:

– Powerful  but no documentation: 
http://alice.loria.fr/software/graphite/
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Backup slides
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