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Abstract

Almost all current feature modelling systems are parametric, history-based modelling systems. These systems suffer from a number of
shortcomings with regard to the modelling process. In particular, they lack a complete specification of feature semantics, and therefore fail to
maintain the meaning of the features during modelling. Also, modelling operations sometimes are hampered by the model history, and
occasionally even have ill-defined semantics.

In the semantic feature modelling approach presented here, the semantics of features is well defined and maintained during all modelling
operations. The result of these operations is independent of the order of feature creation, and is well defined. The specification of feature
classes, the structure and functionality of the feature model, in particular the Cellular Model, and the model validity maintenance scheme are
described. The advantages and disadvantages of the approach, compared to current feature modelling approaches, are pointed out.q 2000
Elsevier Science Ltd. All rights reserved.

Keywords: Feature modelling; History-based modelling; Feature semantics; Declarative modelling; Validity maintenance

1. Introduction

Feature modelling is increasingly being used for modelling
products. One of its main advantages over conventional
geometric modelling is the ability to associate functional
and engineering information to shape information in a
product model. This can be, for example, the function of
some part of the product for the end-user, or information
about the way some part of the product is manufactured.

The basic entity in afeaturemodel is the feature, defined
asa representation of shape aspects of a product that are
mappable to a generic shape and functionally significant for
some product life-cycle phase. An essential aspect of a
feature is that it has a well-defined meaning, orsemantics,
for a particular life-cycle activity.

Two important aspects of the above definition are not
well covered by most current feature modelling systems.
First, feature semantics is poorly defined, limiting the
capability of capturing design intent in the model. Second,
feature semantics is poorly maintained, permitting previous
design intent to be overruled. Such systems are said to lack
validity maintenancefacilities.

Current feature modelling systems do provide the user
with “engineering rich” dialogs aimed at the creation and

manipulation of feature instances. In some systems,
however, these “features” occur solely at the user interface
level, whereas in the product model only the resulting
geometry is stored. Such systems are in essence only
geometric modellers. Most other feature modelling systems,
although they do store information about features in the
product model, fail to adequately maintain the meaning of
features throughout the modelling process. For example, a
modelling operation on one feature may significantly affect
the semantics of other features, without the user even being
notified by the system, let alone assisted in overcoming this
undesirable situation. Assessing the extent to which feature
semantics is kept in a model is therefore a crucial issue in
feature model validity maintenance.

Fig. 1 illustrates this idea. Assume that the two longer
blind holes in the part were positioned relative to the block
right-hand face, whereas the rounded pocket was positioned
relative to the step side face, as indicated in Fig. 1a. If the
width of the step is increased, the rounded pocket overlaps
with the two blind holes, “removing” their circular bottom
faces from the model boundary (see Fig. 1b). Consequently,
the two blind holes now have the shape imprint of through
holes. Stated differently, the semantics of the blind holes has
been changed. If the shape now produced was indeed desired,
it might have been more appropriate not to use blind holes, but
through holes instead, attached to the bottom of the rounded
pocket and the bottom of the base block.
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In addition to lacking feature model validity main-
tenance, current feature modelling systems also present
unexpected results after some modelling operations that
are therefore said to haveill-defined semantics. One of the
reasons for this shortcoming is that these systems are too
tied to methods and techniques of conventional geometric
modelling, e.g. they strongly rely on a history-based notion
of the modelling process.

Raising the level of assistance provided to the user in
maintaining and recovering model validity is essential to
bring feature technology to maturity. In this article, we
present an alternative way of feature modelling, in which
the problems pointed out for current feature modelling
systems are overcome. In particular, the semantics of each
feature is clearly specified and maintained during the whole
modelling process, and the semantics of each modelling
operation is well defined. This new approach is therefore
calledsemantic feature modelling.

In Section 2, current approaches to feature modelling are
surveyed, and their shortcomings identified. The basic idea
of semantic feature modelling is presented in Section 3, and
elaborated in subsequent sections: the specification of
feature classes in Section 4, the structure and functionality
of the feature model in Section 5, and the feature model
validity maintenance scheme in Section 6. In Section 7, a
few examples taken from a modelling session illustrate the
usefulness of this approach. Finally, in Section 8, current
feature modelling approaches and semantic feature
modelling are compared on their merits.

2. Current approaches to feature modelling

Almost all current feature modelling systems are para-
metric, history-based modelling systems, using a boundary
representation as main geometric model. The boundary
representation can be used for several applications, e.g.
process planning for manufacturing. Examples of such
systems are the commercial systems Autodesk Mechanical
Desktop [1], Pro/Engineer [27], MicroStation Modeller [28]
and I-DEAS Master Series [34].

History-based modelling systemsare procedural systems
which, together with an evaluated boundary representation,
keep track of information about each modelling operation
performed, e.g. the type of feature created, its parameter
values, and its model references for positioning. The stored
sequence of modelling operations, called themodel history,
completely determines the resulting boundary represen-
tation. Each new feature is positioned relative to boundary
entities of the evaluated model, obtained from previously
created features. Creation of a feature produces in the
evaluated boundary model the shape imprint characteristic
of its feature type.

Feature instances can be modified by specifying new
values for their parameters, or be deleted from the model.
This is done by modifying, or deleting, the respective
feature creation operation in the model history, after
which a new boundary model is created by sequentially
re-executing the operations in the modified history. With
this scheme, variants of a feature model can easily be
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Fig. 1. Changing feature semantics with a modelling operation.

Fig. 2. Example of re-executing the model history.



created. A simple example of this is given in Fig. 2. The
model has a base block, a through slot and, attached to the
latter, a pocket (see Fig. 2b). If the depth of the through slot
is decreased, the model history in Fig. 2a is re-executed,
yielding the model in Fig. 2c.

Most current feature modelling systems have, at least, six
major shortcomings, which will now be identified and
illustrated with typical examples. The first three have a
common cause: a strong dependency on the chronological
order of feature creation. The fourth shortcoming is due to
constraint solving limitations. The fifth shortcoming is
related to the historical evolution of the entities in the
evaluated boundary model. The sixth problem is mainly
due to the use of a manifold boundary representation.

2.1. Computational cost

The first shortcoming is that re-executing the whole
model history after modifying or deleting a feature has a
high computational cost, roughly proportional to the model
history size. Several methods have been devised to improve
this, e.g. storing all intermediate boundary representations
between history steps. Then, only the history steps after the
modified, or deleted, operation need to be re-executed.
However, storing intermediate models between all history
steps requires a considerable amount of storage space,
roughly proportional to the square of the model history
size. An alternative improvement is to store only the deltas
between history steps, and to rollback to the state from
which the model needs to be re-evaluated. This requires
less storage space, but more computation time again. In
any case, the sequence of re-executed history steps almost
always includes more features than those actually modified
by the operation in question.

2.2. Non-associative set operations

The second shortcoming is that history-based re-evalu-
ation of the model does not guarantee that the evaluated
model matches the specified parameters of features that

overlap. This is illustrated in the model of Fig. 3b, which
consists of a base block, a blind hole and a protrusion.
Because the blind hole and the protrusion do not overlap,
the history of this model could be either that in Fig. 3a or
that in Fig. 3c. However, if the blind hole depth is increased,
so that it now overlaps with the protrusion, different models
will result for the two histories: in case (a), re-execution of
the history produces a blind hole with the expected depth
(Fig. 3d), whereas, in case (c), the blind hole will be “trun-
cated” by the protrusion, its depth becoming equal to the
block height (Fig. 3e). This problem is caused by the static
precedence order upon which model re-evaluation is based:
the chronological feature creation order. The resulting
models are different because the evaluation process uses
two non-associativeset operations according to the nature
of a feature being processed: union for additive features, and
difference for subtractive features. The order in which these
are executed determines the result: performing the union of
the protrusion as the last operation prevents the blind hole
from exhibiting its nominal depth in the model of Fig. 3e.

2.3. Entity references in the model history

The third shortcoming is that history-based re-evaluation
of the model cannot always process feature modification
operations such as, for example, feature re-attachment or
re-positioning relative to other model entities. This is
illustrated in the example of Fig. 4. The model consists of
a block, a through hole and a protrusion (see Fig. 4b). The
history of this model could be either that in Fig. 4a or that in
Fig. 4c. In the first case, re-attachment of the through hole to
the top of the protrusion and the bottom of the block can be
achieved by modifying the corresponding attach reference
of the through hole (see Fig. 4d), and re-executing the
history. However, if this reference modification would be
made in the model history of Fig. 4c, re-evaluation of the
model would not be possible, because the through hole
creation cannot be re-executed with a reference to a face
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(the top of the protrusion) that will be created in the model at
a later stage of its history.

Evaluation of the model by stepwise re-executing a
sequence of operations allows each of them to referonly
to those boundary entities left there by the previous
operation. Therefore, modification of the references in a
modelling operation, e.g. when re-attaching a feature to
other model entities, is not always possible, because the
entities concerned may betied to a posterior stageof the
model history.

2.4. Type of constraints

The fourth shortcoming of current feature modelling
systems has to do with the type of constraints that can be
used. Constraints can be created in a model, and are there-
after taken into account whenever the history is re-executed.
For example, suppose that, after creating the blind hole in
Fig. 5a, the designer wants to keep its depth equal to that of
the blind slot. An algebraic constraint specifying this
equality can be created, and the blind hole creation
operation will be modified in the history to include a ref-
erence to this constraint. When the model history is
re-executed, the depth of the blind hole is computed from
that of the slot, yielding the desired result (see Fig. 5b).
However, such constraints are, in most systems, unidirec-
tional. In the example of Fig. 5, the blind hole depth is
dependent on the slot depth, but not the other way round.
This implies that if the blind hole depth is modified in a
subsequent modelling operation, the depth of the slot is not
adapted accordingly, and is no longer equal to the depth of
the blind hole. This inability to cope with bi-directional
constraints makes the dimensioning of the model
undesirably rigid.

2.5. Persistent naming problem

The fifth shortcoming is that in history-based modelling
systems the semantics of modelling operations is not always
well defined. The main cause of this is the so-called
persistent naming problem. Each modelling operation uses

references to topologic entities in the boundary represen-
tation of the current model, which is the combined result
of all previous modelling operations. For example, a new
feature can be attached to a face or an edge in the boundary
representation. A consequence of this is that each operation
in the history requires a specific set of topologic entities in
the model, also when the operation is re-executed. However,
a general property of boundary representations is that topo-
logic entities may be split, merged or deleted because of
modelling operations. Persistent naming is the process of
identifying and tracking topologic entities when a geometric
model is modified [21]. Although some schemes for persis-
tent naming have been implemented [12,21,23], there are
some fundamental problems related to this issue, of which
two typical examples will now be given. See Ref. [29] for a
formal approach to these problems.

The first example has been taken from Chen and
Hoffmann [13] (see Fig. 6). The model consists of a block
to which subsequently a through slot (Fig. 6a) and a chamfer
(Fig. 6b) have been added. The next modelling operation is
to change the through slot into a blind slot, causing the two
faces f1a and f1b to be merged into one face, f2. When the
model history is re-executed, depending on how the
persistent naming scheme works, the chamfer will either
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be extended along the whole edge (see Fig. 6c) or be
completely deleted (see Fig. 6d). Either result might be
the one expected by the user, but he has no control on the
choice.

The second example is based on an example given by
Lequette [23]. The model consists of a block to which a
protrusion has been added, so that their coplanar top faces
are merged into one face, f1 (see Fig. 7a). Subsequently a
through slot, which intersects both the block and the pro-
trusion, has been attached to face f1, causing it to be split
into two faces, f1a and f1b (see Fig. 7b). The next modelling
step is to slide the protrusion downwards. When the model
history is re-executed, depending on how the persistent
naming scheme works, the slot will either be changed into
a step on the block (see Fig. 7c) or intrude into the block (see
Fig. 7d).

In both examples, the model resulting from a sequence of
modelling operations is in fact determined by the underlying
persistent naming scheme. Although the result isdeter-
ministic, i.e. one will always end up with the same result
after the same sequence of modelling operations, it is
ambiguous, in the sense that it is definitely not always as
expected by the user of the modelling system. Stated differ-
ently, the semantics of some operations is not well defined.

2.6. Maintenance of feature semantics

The sixth, and in a way most serious, shortcoming of
current feature modelling systems is that they do not main-
tain feature semantics. Each feature type specifies its own

feature creation scheme, possibly including some validation
procedure (for example, regarding particular geometric
requirements on the attach faces). This procedure is invoked
whenever such a feature is created, and is meant to ensure
that the operation produces its expected shape imprint.
However, such validation procedures are very limited,
because they can only analyse a subset of the boundary
model, namely the entities involved in the creation
operation. All other boundary entities are outside the
scope of the operation and cannot be accessed in this
analysis. Consequently, features previously created in the
model can easily be made invalid, i.e. in mismatch with
their original validation requirements, without the system
being able to detect this. Systematically analysing the
whole boundary model after each operation is not the
solution either, because in its entities there are no (or
insufficient) traces of the preceding features.

Rossignac [32] provides a good insight into some high-
level feature validity issues, alerting for inconsistencies that
may arise from a naive interpretation of usual editing
commands on feature models. Some more recent research
work has focused on the validation of features, both on
various validity specification issues [11,18] and on validity
maintenance [15,25]. One of the main conclusions of that
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Fig. 6. Semantic problem related to entity naming: splitting and merging of
faces.



research is that a declarative scheme is preferable over
the conventional procedural modelling approaches. In a
declarative approach, the specification of each feature
class includes the validity criteria that determine the
semantics of all its feature instances. The feature model-
ling system, in turn, is responsible for the maintenance of
all features in the product model, in conformity with those
criteria.

Research prototype systems that do have some form of
validity maintenance, see for example Vieira [37] and
Dohmen [14], are limited to the detection of a number of
predefined invalid situations, for which the only solution
offered by the modelling system is the rejection of the
concerning modelling operation. This rigid scheme hinders
the modelling process, yet permits many unanticipated
inconsistencies in the model.

A first example of problems with changing the semantics
of features has already been given in the previous section,
Fig. 1, where two blind holes were turned into through
holes. Another example is that of Fig. 7, in which none of
the two results contains a real through slot, with two sides
and a fully open top, as was specified. These problems are
due to the inability to store in a manifold boundary repre-
sentation all feature information, e.g. closure faces of
subtractive features. This in turn excludes the possibility
of analysing the topology of the boundary of those features,
which is essential to detect and prevent modifications in
feature semantics. Such validity violations, due to modelling
operations that cause overlapping features to affect each
other’s semantics, are usually calledfeature interactions.
Feature interaction phenomena are regarded as a major
problem affecting feature semantics [31], but are not dealt
with in current feature modelling systems.

In fact, current feature modelling systems offer more a
geometric modelling approach, to create a boundary repre-
sentation, than a genuine feature modelling approach. One
of the basic ideas of feature modelling is, after all, that
functional information can be associated to shape infor-
mation. This association becomes, however, useless when
the shape imprint of a feature, once added to the model with
a specific design intent, is significantly modified due to a
subsequent modelling operation. In other words, arbitrarily
modifying the semantics of a feature should be disallowed if
one wants to make feature modelling really more powerful
than geometric modelling.

Summarising, current feature modelling systems have
computational cost problems, suffer from dimensioning
and modelling limitations due to their strong dependency
on the chronological order of feature creation and to the use
of unidirectional constraints, occasionally suffer from ill-
defined semantics of modelling operations, and do not
adequately maintain the semantics of features.

In this article, we propose a new feature modelling
approach:semantic feature modelling[2]. This approach
will be outlined in the next section, and elaborated in the sub-

sequent sections, emphasising how it overcomes the problems
pointed out for current feature modelling approaches.

3. What is semantic feature modelling?

Semantic feature modelling is a declarative feature
modelling approach. This means that, in contrast to many
current approaches, feature specification and model main-
tenance are clearly separated. All properties of features,
including their geometric parameters and validity con-
ditions, are declared by means of constraints. The main
advantage of declarative modelling is the freedom in the
type of constraints that can be specified, and therefore in
the way a model can be edited and maintained.

In the semantic feature modelling approach, it is essential
that each feature has a well-defined meaning, orsemantics.
This is specified infeature classes, which are structured
descriptions of all properties of a given feature type,
defining a template for all its instances. Such properties
include the validity conditions that all feature instances of
that type should satisfy. These conditions, as well as the
feature shape and its parameters, are specified using a vari-
ety of constraint types.

Most current systems have a rudimentary form of validity
conditions, but our approach allows the specification of
more powerful ones, which take into account, for example,
requirements of a technological and functional character,
often dependent on the specific application area. An
example of such a validity condition is that the top and
bottom face of a through hole’s cylindrical shape should
remain open, or, stated differently, these faces shouldnot
be on the boundary of the resulting object. Such feature
validity conditions are in fact indispensable to maintain
the semantics of features during the modelling process;
without them, features can never be more than high-level
geometric modelling primitives.

In our approach, users can define their own feature
classes, e.g. by inheriting from an existing feature class
and adding some constraints to its definition. Feature classes
are stored in feature libraries, from which new features can
be instantiated during a modelling session. Feature class
specification is elaborated in Section 4.

Another characteristic of semantic feature modelling is
that the whole modelling process is uniformly carried out in
terms of features and their entities (e.g. faces and
parameters), and of constraints among these. So all
modelling actions performed by the user are effectively
feature-based, and the same applies to all output, both
graphical and textual, generated by the modelling system.
An advantage of this is that a feature and, in particular, its
faces and their names are persistent. These remain valid, and
therefore also all references to them, as long as that feature
instance remains in the model. This is in contrast to history-
based modelling approaches, in which references to entities
of the evaluated model are kept in the model history, with
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the drawbacks identified in the previous section; unlike
boundary faces in such systems, feature faces are never
split, merged or deleted, even though their geometric
representation may be.

Probably the most important characteristic of the
semantic feature modelling approach is that the semantics
of all features is effectively maintained throughout model
evolution, for all modelling operations. Some essential
aspects of feature semantics, e.g. the through hole clearance
described above, cannot be maintained without an evaluated
geometric model, also able to consistently represent the
whole boundary of subtractive, possibly overlapping,
features. In other words, a non-manifold geometric model,
containing the relevant feature information, is indispensable
to perform effective validity maintenance.

The two characteristics of semantic feature modelling just
mentioned lead to a two-level structure in the semantic
feature model, clearly distinguishingmodelling entities
from entities in the evaluated geometric model. The former,
i.e. the entities on which all modelling operations are
performed, are kept in the first level of the model—the
so-calledFeature Dependency Graph—, which contains
all feature and constraint instances, interrelated by
dependency relations. The second level contains the
evaluated geometric representation of the product in the
so-called Cellular Model. Its entities are kept internal,
being only required to “reflect” the geometry that results
from the modelling operations performed on the first
level. The semantic feature model, and mechanisms for
maintaining the consistency between both levels, are
elaborated in Section 5.

Maintaining the feature model throughout the modelling
process requires not only managing all its constraints, but
also monitoring each modelling operation in order to assess

the conformity of each feature in the model with its validity
criteria. For example, most changes in the meaning of
features are due to modelling operations that cause over-
lapping features to affect each other’s semantics, so-called
feature interactions, as illustrated in the examples of Figs. 1
and 7. Managing feature interaction phenomena plays an
essential role in the validity maintenance scheme of the
semantic feature modelling approach, so that all relevant inter-
action situations can be detected, reported and handled in an
appropriate way. Only this can guarantee that all aspects of the
design intent once captured in the model are permanently
maintained. An advantage of maintaining feature model
validity in this way is that it becomes possible to provide
the user with much better assistance whenever a modelling
operation leads to some constraint violation in the model. In
particular, explanations on what is causing a constraint
violation, and generation of context-sensitive corrective
hints, can significantly improve the modelling process.
Feature model validity maintenance is elaborated in Section 6.

The semantic feature modelling approach has been imple-
mented in theSpiff system [9], a prototype multiple-view
feature modelling system developed at Delft University of
Technology.

spiff consists of two main functional subsystems: the
Feature Library Manager and the Feature Modeller. The
Feature Library Managerprovides interactive facilities
for specification of feature classes and for their organisation
in application-specific feature libraries. These class specifi-
cations can be loaded into the Feature Modeller at runtime.
The functionality and architecture of the Feature Library
Manager have been described by Bidarra et al. [6], and
are summarised in Section 4.

The Feature Modellerprovides modelling facilities for
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creation and manipulation of feature models, according to
the architecture depicted in Fig. 8. Several system modules
have been described elsewhere [5,15,19], and will be only
briefly summarised here.

The Feature Model Managerreceives commands from
the user via a graphical user interface, and translates them
into elementary tasks, which are then dispatched to the other
Managers. It maintains theFeature Dependency Graph, a
high-level representation of the structure of the product (see
Sections 5.2 and 5.4). Further, the Feature Model Manager
is responsible for controlling all modelling operations, and
for maintaining model validity (see Section 6).

The Feature Managersupervises the model processing
tasks of each modelling operation, which are actually
performed by the Constraint Manager and the Feature
Geometry Manager. TheConstraint Manageris responsible
for all constraint solving tasks, maintaining all constraints in
the Feature Dependency Graph. TheFeature Geometry
Manager maintains a geometric model of the product in
the Cellular Model, and takes care of updating it as required
by each modelling operation (see Sections 5.3 and 5.5). The
Interaction Manageris responsible for the analysis of the
Cellular Model, in order to detect any disallowed feature
interactions possibly resulting from a modelling operation
(see Section 6.1).

4. Specification of feature semantics

Feature class specification involves specification of its
shape, its validity conditions, and its interface to the
feature model, according to the structure depicted in
Fig. 9. For all aspects, constraints are used. Thesefeature
constraints are members of the feature class, and are
therefore instantiated automatically with each new feature
instance.

The basis of a feature class is a parameterised shape. For a
simple feature, this is abasic shape, e.g. a cylinder for a
hole. A basic shape encapsulates a set of geometric
constraints that relate its parameters to the corresponding
shape faces. For a compound feature, the shape is a combi-
nation of several, possibly overlapping, basic shapes, e.g.
two cylinders for a stepped hole.

The geometry of a feature, designated the feature’sshape
extent, accounts for the bounded region of space comprised
by its volumetric shape. Moreover, its boundary is decom-
posed into functionally meaningful subsets, theshape faces,
each one labelled with its own generic name, to be used in
modelling operations. For example, a cylinder shape has a
top, a bottomand asideface.

A feature class also associates to each feature shape the
notion of feature nature, indicating whether its feature
instances represent material added to or removed from the
model (respectively,additiveandsubtractivenatures).

The specification of validity conditions in a feature class

can be classified into three categories: geometric, topologic
and functional.

One way of constraining the geometry of a feature class is
by specifying the set of values allowed for a shape para-
meter. We usedimension constraintsapplied on shape para-
meters. For instance, the radius parameter of a through hole
class could be limited to values between 1 and 10. Feature
shapes can also be geometrically constrained by means of
explicit relations among their parameters. These relations
can be simple equalities between two parameters (e.g.
between width and length of a square section passage
feature) or, in general, algebraic expressions involving
two or more parameters and constants. For this, we use
algebraic constraints.

The specification of a feature shape yields a set of shape
faces providing full coverage of the boundary of a volu-
metric feature. However, for most features, not all these
faces are meant to effectively contribute to the boundary
of the modelled part. Some faces, instead, have a closure
role, delimiting the feature volume without contributing to
the model boundary. The specification of such properties is
called topologic validity specification.

To specify topologic validity in a feature class, we use
boundary constraintson each shape face. Boundary
constraints, first proposed by Bidarra and Teixeira [8]
under the namesemantic constraints, specify which topo-
logical variants of a feature instance are allowed, by stating
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the extent to which its feature faces should be on the model
boundary. Boundary constraints are of two types:
onBoundary, which means the shape face should be present
on the model boundary, andnotOnBoundary, which means
the shape face should not be present on the model boundary.
Further, both types of boundary constraints are para-
meterised, stating whether the presence or absence on the
model boundary iscompletelyor only partly required. An
example of this is a blind hole class for which the top face
has anotOnBoundary(completely)constraint, the side face
has an onBoundary(partly) constraint, and the bottom
face has anonBoundary(completely)constraint.

Geometric and topologic validity specifications alone, as
described above, are unable to fully describe several other
functional aspects that are inherent to a feature class as well.
These are better described in terms of the feature volume or
feature boundary as a whole, and therefore require a higher-
level specification, not directly based on shape parameters
or faces. An example of this is the requirement that every
feature instance of some class should somehow contribute to
the shape of the part model. Just like boundary constraints,
such functional requirements can be violated byfeature
interactions caused during incremental editing of the
model. Feature interactions are modifications of the shape
aspects of a feature that affect its functional meaning. An
example of this is thetransmutationinteraction of the blind
holes into through holes in Fig. 1. A comprehensive classi-
fication of feature interactions can be found in Ref. [2]. For
completeness, it is briefly summarised in Table 1. We use
interaction constraintsin a feature class in order to indicate
that a particular interaction type is not allowed for its
instances [5]. Topologic interaction, corresponding to the
violation of a boundary constraint, is, by definition always
disallowed.

Feature constraints and parameters may require external

data to be provided at feature instantiation stage—the
so-calleduser-supplied data. Those feature members con-
stitute thefeature class interface. The specification of the
feature class interface determines how feature instances will
be presented to the user of the modelling system and how
the user will be able to interact with them. Essential in the
feature class interface is the positioning and orientation
scheme, which is specified by means of attach and
geometric constraints, as depicted in Fig. 9.

An attach constraintof a feature couples one of its faces
to a user-supplied feature face, to be chosen among those of
the features already present in the model. Attach constraints
are a kind of coplanar geometric constraints that take into
account the natures of the two features involved in order to
determine the appropriate normal orientations. For example,
the top and bottom faces of a through hole are used to attach
it to, say, the top and bottom faces of a block, respectively.

Geometric constraintsposition and orient a feature
relative to faces of other features present in the model, by
fixing its remaining degrees of freedom. For this, a
geometric constraint couples one of the feature faces to a
user-supplied feature face in the model, possibly with some
extra numeric parameter(s). For instance, to position a
through slot, a distanceFaceFaceconstraint might be
used, which requires an external reference feature face
and a distance value.

Some shape parameters may be determined implicitly
from the feature attachments, e.g. the depth of a through
hole or the length of a through slot. All other shape
parameters need a user-supplied value at feature instan-
tiation stage, and are therefore also included in the feature
class interface.

A detailed description of feature class specification
following the semantic feature modelling approach can be
found in Ref. [6].

5. The semantic feature model

This section describes thesemantic feature model, on
which the semantic feature modelling approach is based.
First, the important notion ofdependencybetween model
entities is introduced (Section 5.1). Next, the two levels
integrated in the feature model—the Feature Dependency
Graph and the Cellular Model—are elaborated (Sections 5.2
and 5.3), and mechanisms for model maintenance are
presented for both levels (Sections 5.4 and 5.5). Finally, a
history-independent scheme for the interpretation of the
Cellular Model is presented (Section 5.6).

5.1. The dependency relation

Many researchers in feature modelling have pointed out
the convenience of keeping track of the model structure in
terms of the relations among its features, in addition to a
low-level, evaluated geometric model. A variety of struc-
tures has been proposed, expressing attachment, adjacency,
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Table 1
Classification of feature interactions

Interaction type Description

Splitting Splits the boundary of a feature into two (or more)
disconnected subsets

Disconnection Causes the volume of an additive feature (or part of
it) to become disconnected from the model

Boundary clearance Causes (partial) obstruction of a closure face of a
subtractive feature

Volume clearance Causes partial obstruction of the volume of a
subtractive feature

Closure Causes some subtractive feature volume(s) to
become a closed void inside the model

Absorption Causes a feature to cease completely its
contribution to the model shape

Geometric Causes a mismatch between a nominal parameter
value and the actual feature geometry

Transmutation Causes a feature instance to exhibit the shape
imprint characteristic of another feature class

Topologic Corresponds to the violation of a boundary
constraint in a given feature



connectivity or similar relationships among the features of a
model. Some of them were based on a rigid, CSG-like,
parent–child relationship, yielding a tree-structured
model; many others adopted a general graph structure, in
order to better capture feature relations in more complex
models [10,16,17,22,24,35]. Thedependency relation
defined in this section has such a graph representation. It
is clearly defined, has rich semantics, and has direct appli-
cation in feature model maintenance.

5.1.1. Dependencies among features
As described in Section 4, instantiation of a new feature

requires the user to supply a set of parameter values, aimed
at initialising all its constraints and parameters. Some of
these values consist of references to faces of other features,
and are meant to specify how the new feature should be
attached and positioned relative to the features already
present in the model. In accordance with the requirements
introduced in Section 3, such references are persistent, in the
sense that they remain valid as long as the features referred
to remain in the model.

Moreover, these references establish a clear dependency
among the features in the model. So, for example, if a blind
hole is attached to the bottom face of a slot, it will be
displaced when the depth parameter of the slot is modified.
Also, the blind hole attachment has to be readjusted, or the
blind hole itself removed, when the slot feature is removed
from the model. A dependency between two features is
unidirectional: one can always distinguish the feature that
is determined from the feature that determines. In this sense,
removal of the blind hole from the model does not present
any problem to the slot feature.

We can therefore state that featuref1 directly dependson
featuref2 wheneverf1 is attached, positioned or, in some
other way, constrained relative tof2. Stated differently,f1
directly depends onf2 if some feature constraint off1 has a
reference to an entity off2.

By extension, a feature is considered to depend on
another feature if the above definition recursively applies
between them: featuref1 dependson featuref2 wheneverf1
directly depends on some featuref3 that dependson f2.
Finally, two features are said to beindependentif and
only if none of them depends on the other.

5.1.2. Dependencies between constraints and features
In feature modelling, it is very convenient to be able to

define, besides the constraints in feature classes, constraints
on or among the feature instances in the model, with the
goal of further specifying design intent. Constraints for this
can be of any type mentioned in Section 4, and are called
model constraints.

A simple example of the use of model constraints is given
in Fig. 10. The slot and the passage features, which were
independently positioned relative to the block side faces
(see Fig. 10a), are repositioned and aligned by means of
two geometric constraints: one requiring the left faces of
the two features to be coplanar, the other setting the distance
of the slot, and therefore also of the passage, to the block
right face (see Fig. 10b).

This example illustrates three important properties of
model constraints:

1. Unlike the feature constraints used throughout Section 4,
they are model entities comparable to features: they are
created, edited, maintained and removed from the model
in a similar way.

2. They have a multidirectional character among the
features they refer to: a modification inany of them is
always propagated toall the others. In the example of
Fig. 10b, regardless of which of the two features is
positioned by the distance constraint (relative to the
block right face), the coplanar constraint will always
cause the other feature to “follow” it (compare this
with the limitation pointed out in Section 2.4).

3. They mostly overrule some feature constraints
previously specified. In the example of Fig. 10b, the
two model constraints prevail over the original
positioning constraints of the two features relative to
the block side faces. If this would not be done, an over-
constrained situation would arise.

A logical consequence of properties (1) and (2) is that model
constraints, regarded as model entities, depend on the
features they refer to. By analogy to feature–feature attach-
ments, we say that they areattached to those features.
Because of this dependency, it is impossible, for example,
to remove either the slot or the passage from the model in
Fig. 10b without, at the same time, removing, or at least
modifying, the model constraints attached to it.

Similarly to what has been defined for features, we can
now state that a model constraintc dependson a featuref
wheneverc is attached tof.

The notion of dependency plays a crucial role in the
semantic feature model, described in the following sections.
It is a dynamic relation among modelling entities, and can
therefore evolve as these entities are modified, in contrast to
the static chronological feature creation order used in most
history-based feature modelling systems.
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Fig. 10. Relative repositioning of features by means of model constraints.



5.2. The Feature Dependency Graph

The Feature Dependency Graphcontains all feature
instancesin the product model, each of them with its own
set of entities (e.g. shape, parameters and constraints), and
all model constraint instances. These instances are inter-
related by the dependency relations introduced in the
previous section, yielding a directed acyclic graph struc-
ture, consisting of the set of all model entities (feature
instances and model constraint instances), and the set of
dependency relations among these entities. Each edge
represents a dependency relation, and is oriented towards
the dependent feature or model constraint. As an example,
Fig. 11 depicts the Feature Dependency Graph of the
model in Fig. 10b.

The Feature Dependency Graph provides a high-level
structure of the feature model. In fact, it containsall entities
and information required for model manipulation, in a
structured way. Interaction between the user of the
modelling system and the model takes place in terms of
the features and model constraints in the Feature
Dependency Graph. In addition, all modelling computations
are primarily carried out at this level. For example, all
geometric and algebraic constraint solving tasks act upon
entities at this level. Each entity in the Feature Dependency
Graph may be queried about its current parameter values
and dependencies. Further, each feature node in the graph
“knows” about its current global position, as well as its
geometry.

The Feature Dependency Graph contains no evaluated
model geometry, but instead all information necessary to
generate and maintain this in the Cellular Model, as will
be described in the following section.

5.3. The Cellular Model

The Cellular Model is a non-manifold representation of
the feature model geometry, integrating the contributions
from all features in the Feature Dependency Graph. The
Cellular Model is presented in detail in Ref. [7], which
also contains a survey on other research proposals for the
geometric representation of feature models.

The Cellular Model represents a part’s geometry as a
connected set of volumetric quasi-disjointcellsof arbitrary
shape, in such a way that each one either lies entirelyinside
a shape extent or entirelyoutsideit. The cells represent the
point sets of the shape extents of all features in the model.

Each shape extent is therefore represented in the Cellular
Model by a connected subset of cells.

Further, the cellular decomposition is interaction-driven,
i.e. for any two overlapping shape extents, some of their
cells lie in both shape extents (and are calledinteraction
cells), whereas the remaining cells lie in either of them.
Consequently, two cells can never volumetrically overlap.
They may, however, be adjacent, in which case there is
an interior face of the Cellular Model separating them.
Such a face can be regarded as having two “sides”,
designated as partnercell faces. A face that lies on
the boundary of the Cellular Model has only one cell
face (one “side”), that of the only cell it bounds. In
either case, a cell face always bounds one and only
one cell.

As described in Section 4, the boundary of a feature’s
shape extent is decomposed into functionally meaningful
subsets, the shape faces, each one labelled with its own
generic name. Each shape face is represented by a
connected set of cell faces. In order to be able to search
and analyse features and their faces in the Cellular Model,
each cell has an attribute—calledowner list—indicating
which shape extents it belongs to (see Fig. 12). Similarly,
each cell face has also an owner list, indicating to which
shape faces it belongs.

Just like for features, thenature of a cell expresses
whether its volume represents “material” of the part or
not. Its determination will be precisely described in Section
5.6. For example, in the model of Fig. 12, cells 1, 2 and 7
have additive nature (i.e. the nature of the block, the
cylindrical protrusion or the rectangular protrusion,
respectively), whereas cells 3, 5 and 6 have subtractive
nature (i.e. that of a subtractive feature in their owner
lists). Similarly, thenature of a cell faceexpresses whether
it lies on the boundary of the part or not.

The Cellular Model, including its attribute mechanism to
maintain and propagate the owner lists of cells and cell
faces, was implemented using the Cellular Topology husk
of the Acis Geometric Modeller [36].

5.4. Feature Dependency Graph maintenance

Feature model maintenance is the process of updating the
feature model, according to the requirements of each
modelling operation. It is performed at both levels of the
semantic feature model: first, the Feature Dependency
Graph is modified as described in this section; next, the
Cellular Model is updated accordingly as described in the
next two sections.

Modelling operations can be grouped into two major cate-
gories:feature operationsandmodel constraint operations
(or simply constraint operations). Feature operations
include the following:

Adding a new feature instance to the model.This oper-
ation creates a new feature instance of the chosen feature
class, and requests from the user a full set of initialisation
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Fig. 11. Feature Dependency Graph of the model in Fig. 10b.



parameter values for the new feature. Together with this,
all constraint members specified in its class are also
instantiated, and initialised with the corresponding user-
supplied parameter values (e.g. distance parameters and
external feature faces for attach and positioning
constraints, see Section 4).
Editing a feature instance in the model.This operation
permits modifyingany feature interface parameter value
provided earlier to that feature instance.
Removing a feature instance from the model.This oper-
ation removes from the model the feature and all feature
constraints instantiated at its creation stage.

Constraint operations are similar to feature operations:
model constraints can be added, modified and removed.
They are, however, most often specified and executed in
“batch form” for user convenience: several new model
constraints can be added to the model in one step, and
existing model constraints modified or removed, while at
the same time some feature constraints can be selected to
be switched off, in order to avoid geometrically overcon-
strained situations (see Fig. 10b and property (3), in Section
5.1, for an example).

In Section 6 the generic scheme for modelling operations
will be analysed in detail, distinguishing in them a number
of steps (Fig. 19). In the current context, it is enough to refer

to those steps responsible for the modification of the feature
model.

The first step for all modelling operations (except for
feature removal operations) is the internal geometric and
algebraic constraint solving process. When this process
has been successfully performed, all feature instances in
the Feature Dependency Graph have their parameters,
position and (shape extent) geometry updated. The solving
process also records which features have actually been
geometrically modified by the modelling operation.

The Feature Dependency Graph is updated according to
the specificity of each modelling operation:

Adding a new feature instance to the model.The new
feature instance is added to the Feature Dependency
Graph, and all its dependencies are stored, according to
the user-supplied interface parameter values.
Editing a feature instance in the model.The modified
feature instance is kept in the Feature Dependency
Graph. All its feature constraints are adjusted as required
by the operation, possibly modifying some of the feature
dependencies (as, for example, in a re-attach operation).
Removing a feature instance from the model.The feature
is simply removed from the Feature Dependency Graph.
The removal operation is, however, only allowed if it has
no dependent entities (features or constraints) in the
Feature Dependency Graph; otherwise, the user is given
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Fig. 12. Cell owner lists in the Cellular Model.



the possibility of modifying these in order to eliminate
their dependencies (e.g. by changing their attachments,
see Section 6.2).
Constraint operations.All new model constraints are
added to the Feature Dependency Graph, according to
their dependencies. Similarly, modified and removed
model constraints are also updated in, or removed from,
the Feature Dependency Graph.

5.5. Cellular Model maintenance

The next step of a modelling operation consists of
updating the Cellular Model, so that changes in the Feature
Dependency Graph are also reflected in the geometric
model. This step is essential in order to be able to check
boundary and interaction constraints, which are concerned
with the concrete geometry and topology exhibited in the
Cellular Model by the features involved in the operation
(see Section 6 for more on thisfeature interaction detection
process).

For each modelling operation, this step is carried out in
two phases. In the first phase, the Cellular Model is incre-
mentally re-evaluated; this is described in the remainder of
this section. In the second phase, the Cellular Model is
interpreted, according to the feature information stored in

its cellular entities and the current dependencies among the
features; this is discussed in Section 5.6.

These two phases make it possible to satisfy the following
goals, essential to overcome the first three shortcomings
pointed out in Section 2:

1. The process of re-evaluation of the Cellular Model, after
each operation, should be limited in scope, in order to
keep its computational cost independent of the number of
features present in the model.

2. The evaluation and interpretation of the Cellular Model,
corresponding to the structure of the Feature Dependency
Graph, should be completely and unambiguously
determined without invoking any model history con-
siderations.

5.5.1. Incremental Cellular Model evaluation
In contrast to history-based systems, which use two

non-associative set operations (union and difference) to
evaluate the geometric model (see example in Section
2.2), in the semantic feature modelling approachonly one
set operationis used to evaluate the Cellular Model: it is
computed by performing thenon-regular cellular unionof
the shape extents of all features. Because it is a union
operation, the order in which the shape extents are
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Fig. 13. Propagation of owner data in a cellular union operation.

Fig. 14. Incremental evaluation of the model after a feature re-attachment.



processed is irrelevant for the final Cellular Model
obtained. By these non-regular cellular operations, between
(the single cell representing) a shape extent and the other
cells generated so far, the cellular decomposition described
in Section 5.3 is computed. Essential in this process is the
correct propagation of the owner lists of each cell and cell
face when these are further decomposed, so that each entity
“knows” precisely which shape extents, or shape faces, it
belongs to.

A simple example of a non-regular cellular union
operation is given in Fig. 13, where a rectangular slot is
inserted into a Cellular Model consisting of a single
block. Before the cellular union, the owner lists of both
cells are as shown in Fig. 13a (for the sake of legibility,
only some face owner lists of both shapes are depicted).
After the operation, the block cell is decomposed into two
cells, of which one is shared with the slot, as shown in Fig.
13b. The owner lists of the cell faces in Fig. 13a are
also propagated, when these faces are split, as shown in
Fig. 13b.

Re-evaluation of the Cellular Model after each modelling
operation makes extensive use of the ability to process the
cellular topology. A detailed description of Cellular Model
processing algorithms can be found in Ref. [7]. According to
the particular feature operation, these can be summarised as
follows:

Adding a new feature instance to the model.The shape
extent of the new feature is added to the Cellular Model.
For this, the non-regular cellular union operation is used,
which computes the cellular decomposition described
above, and propagates the owner list attributes among
the relevant cells and cell faces in the Cellular Model.
Removing a feature instance from the model.This is
carried out in three steps: (i) all references to that feature
are removed from the owner lists of Cellular Model
entities; (ii) cells with an empty owner list are removed
from the Cellular Model; and (iii) adjacent cells and cell
faces with the same owner list are merged.
Editing a feature instance in the model.In this case,only
the edited feature, and all its dependent features that are
also modified by the operation, need to be taken into
account. They are removed from the Cellular Model

and then re-added with their new parameters, using the
addandremoveoperations just described.

A simple example of a feature modification operation of the
model in Fig. 12 is given in Fig. 14, where the attachment of
the protrusionRight is modified, from the block to the
cornerTopRight face. The blindHoleRight is also displaced,
due to its attachment to the protrusionRight, whereas all
other features maintain all their parameters and their
position. The scope of modified features is easily obtained
by keeping track of which features are actually modified
during the geometric and algebraic constraint solving
process. So, in this example,only the protrusionRight and
its dependent blindHoleRight need to be updated in the
Cellular Model. This is carried out by removing the cells
of the protrusionRight and the blindHoleRight from their
original position, and adding their shape extents (with a
cellular union operation) in the new position.

This example also illustrates that re-evaluation of the
Cellular Model is independent of the chronological order
of feature creation: the process is the same, regardless of
whether the protrusionRight was the first feature attached to
the block or not (see Fig. 15a). So the computational cost
of modification modelling operations is dependent on the
number of modified features, and not on the number of
features in the model, as in history-based modelling
(see Section 2.1). In the latter, after the protrusionRight
displacement operation, the whole model history (at least
since the protrusionRight creation) is re-executed, including
features whose imprint remains unaltered, e.g. cylindrical-
Protrusion and blindHoleTop in the model history at the
right-hand side of Fig. 15a. Even worse, a history-based
modelling system would not be able to perform this
operation if the model history were that at the left-hand
side of Fig. 15a, because the cornerTopRight is there
more recent than the protrusionRight (see discussion of
this drawback in Section 2.3).

5.6. History-independent interpretation of the Cellular
Model

Interpretation of the Cellular Model consists of deter-
mining whether the point set represented by each cell does
belong to, or represent “material” of, the product, i.e. the
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nature of that cell. This requires deciding which of the
features in its owner list “prevails”, either as additive or
as subtractive [4]. It is only at this stage that the precedence
among features needs to be taken into account.

5.6.1. Determination of cell natures
If, based on some precedence criteria, aglobal ordering

can be defined on the setF of all features in the model, say
assigning to them unique, increasingprecedence numbers,
then every cell owner list (a subset ofF) can be sorted
according to these precedence numbers. The nature of a
cell becomes, then, the nature of the last feature in its
owner list, i.e. the feature with the highest precedence
number. It is obvious that such a global ordering is always
possible, as the set of features in the model is discrete and
finite, and therefore numerable.

According to the above, the nature of a cell, whose owner
list has n elements, is exclusively determined by thenth
element (the last feature) in the owner list. Obviously, the
nature of a cell is independent of features that do not occur
in its owner list. For example, referring to the model in Fig.
14, the nature of the cell of the cornerBotRight is inde-
pendent of whether the precedence numbers of, say, the
cylindricalProtrusion, the protrusionRight and the blind-
HoleRight are higher or lower than its own precedence
number.

We can conclude that, in general, different feature prece-
dence sequences can result in the same nature for each cell.
For the interpretation of the model, it is therefore enough to
have a procedure that is always able to generateonesuch
sequence. We now discuss appropriate precedence criteria
to achieve this goal.

5.6.2. Precedence criteria
The example in Figs. 14 and 15 suggests that sorting the

precedence sequence of features according to thestatic
chronological feature creation order, is not a good criterion

for the interpretation of the Cellular Model. In fact,
whichever the sequence of precedence numbers before the
operation, changing the attachment of the protrusionRight
requires the cornerTopRight to precede the protrusionRight
after the operation. Otherwise, the precedence number of the
protrusionRight would be lower than that of the cornerTop-
Right, and the former would appear truncated by the latter.
We can conclude from this example that the precedence
sequence of features should bedynamic, i.e. subject to
revision after each modelling operation. Stated differently,
for the interpretation of the structure of the feature model at
any moment, the chronological order in which its features
were originally created is, in general, not determinative.
Instead,the actual dependenciesamong themat that stage
do provide the key for this precedence analysis.

For the features highlighted in the model of Fig. 14a, for
example, one can identify the following two precedence
relations, based on an attachments’ analysis: (i) the protru-
sionRight precedes the blindHoleRight (i.e. the latter is
dependent on the former); and (ii) the block precedes all
other features (i.e. they are all dependent on it). Relative
precedence among most other features is irrelevant when it
comes to interpret this model. So, for example, both feature
precedence sequences of Fig. 15a produce the same model
interpretation of Fig. 14a. Fig. 15b, on the contrary, shows a
possible sequence of precedence numbers for the modified
model in Fig. 14b. Whatever the sequence of precedence
numbers before the operation, it can be remarked that the
cornerTopRight now precedes the protrusionRight (i.e. has a
lower precedence number), as required by the new attach-
ment of the latter.

In short, the dynamic dependency relations in the Feature
Dependency Graph permanently reflect the current structure
of the feature model. Therefore, they make up the first
precedence criterion in our goal of generating a global
precedence sequence:

Criterion I. Each edge in the Feature Dependency Graph
represents a precedence relation between two features in
the model: if featuref2 depends on featuref1, then f1
precedes f2.

By definition, the above criterion is able to determine a
precedence relation between dependent features only.
However, for the modelling operation described in Section
2.2, Fig. 3, a precedence problem was pointed out between
two independent features, the blind hole and the protrusion:
if the precedence numbers after the operations were kept as
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Fig. 16. The precedence sequence (a) for the model of Fig. 3e yields an
incorrect nature for the cell highlighted in (b).

FeaturesInvolved = {features involved in the modelling operation}

for each  f i  in  FeaturesInvolved

NewOverlappings = OS after (f i )\OS before (f i )

for each  f j  in  NewOverlappings

if  f i  independent of f j  and  f i .nature ≠ f j .nature

then record relation f j  precedes f i

Fig. 17. Precedence detection algorithm for overlapping independent features.



shown in Fig. 16a, i.e. following the sequence of the history
in Fig. 3c, the top interaction cell of the blind hole (high-
lighted in Fig. 16b) would be additive, i.e. have the nature of
the protrusion. This nature is, however, incorrect, because it
is not in accordance with the semantics of the modelling
operation performed: the nominal depth of the blind hole,
which has been increased, does not match the actual depth it
exhibits in the model.

What is characteristic of the situation described in Figs. 3
and 16, is that the modelling operation in question causes an
overlap between two independent features of different
natures. To avoid incorrect interpretation of a model such
as that shown in Fig. 16, an explicit precedence relation
should be established when, as a result of a modelling
operation, two independent features with different natures
come to overlap. The question that arises is thenwhich
orientation should be assigned to this precedence relation.
The above example suggests that, to preserve the semantics
of a modelling operation in such cases, a featuref that is
modified by the operation should “prevail” in the determi-
nation of the nature of its interaction cells. Stated

differently, other overlapping independent features with
different nature should precedef in the precedence
sequence. So after the operation in Fig. 3, the protrusion
should precede the blind hole. Hence the following:

Criterion II. To eachnew overlap between two inde-
pendent featuresf1 and f2 of different natures, caused by
some modelling operation onf2, corresponds a prece-
dence relationf1 precedes f2.

With the two criteria above, based on the dependency
relation and on overlap between independent features, a
global sorting of all features in the model can be achieved.
We now show how such precedence criteria are used to
produce a correct interpretation of the Cellular Model,
which is unambiguously determined without invoking any
model history considerations.

5.6.3. Computation of feature precedence relations
The precedence relation defined above is an example of a

so-calledpartial orderingrelation, i.e. a relation that defines
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Fig. 18. Cellular Model interpretation after a modification operation.



an ordering betweensomepairs of elements in a setS, but
not among all of them.

The dependency relation used in Criterion I is perma-
nently maintained in the Feature Dependency Graph, and
is therefore always explicitly available for use in the model
interpretation process.

Criterion II states that an explicit precedence relation
should also be established when a modelling operation
causes an overlap between two independent features with
different natures. To detect such occurrences and determine
the orientation of the relation, the set of features involved in
the modelling operation, i.e. those which are actually
processed in the incremental re-evaluation of the Cellular
Model (see Section 5.5), is analysed according to the algo-
rithm in Fig. 17. Basically, the algorithm checks whether
any of these features,fi ; has acquired a new overlap with an
independent featurefj ; if this is the case, and the features
have different natures, then the relation “fj precedesfi” is
recorded.

In detecting a new overlap, the algorithm uses the notion
of overlapping setof a featuref, denotedOS� f �; i.e. the set
of all features that overlap with featuref. Determination of
OS� f � is straightforward and requires no geometric compu-
tations: it is simply computed as the union of the owner lists
of all cells of featuref. OS� fi� of each featurefi involved in
the operation is computed and stored before the Cellular
Model is re-evaluated, and compared withOS� fi�
determined after the re-evaluation, in order to detect new
overlaps.

Once the precedence relations have been established,
using the two criteria described, global sorting of the
features can be easily performed by a classical topological
sorting algorithm, whose goal is precisely to generate a
linear ordering of a partially ordered set of elements, see
for example Wirth [38]. Such an algorithm builds a new
sorted sequence by iteratively selecting from the old sorted
sequence a feature whose precedents are already sorted.
Eventually, the features in the resulting sorted sequence
have new precedence numbers assigned, and the nature of
all cells becomes therefore automatically determined.

The example of Fig. 18 illustrates the interpretation of the
Cellular Model. In this example, two modelling operations
are performed that involve changes in one or more features.
The initial model (see top of Fig. 18) has two crossing slots
of different depths attached to a base block, and a rib
attached to the bottom face of the deeper slot, through slot
1. The resulting models are shown for both operations,
together with the corresponding Cellular Model and the
graph of precedence relations used in its interpretation. In
the graphs, the feature nodes that are actually modified by
the operation are highlighted (in black). Moreover,
additional precedence relations between independent
features, established by the precedence detection algorithm
of Fig. 17, are drawn with a dotted line, to distinguish them
from the other precedence relations, derived from the
dependencies in the Feature Dependency Graph.

In the first operation (see Fig. 18a), the depth of the split
through slot 2 is increased, so that it overlaps with the rib.
As these two features are independent, their overlap leads to
a precedence relation being established between them.
Consequently, the rib receives a lower precedence number
than through slot 2, and their interaction cell is therefore
subtractive. With history-based boundary re-evaluation, the
resulting model of Fig. 18a would not be feasible if through
slot 2 had been created before the rib.

In the second operation (see Fig. 18b), the depth of
through slot 1 is decreased, so that its dependent rib
becomes in interaction with through slot 2. In this case,
from the analysis of the precedence detection algorithm,
the (indirectly) modified rib is preceded by the independent
through slot 2, resulting in an additive nature for their inter-
action cell, highlighted in Fig. 18b. Again, the detection of
the new overlap, and the precedence relation established,
yields a model interpretation in which the nature of the
modified features prevails over that of the other over-
lapping features. To achieve the model of Fig. 18b
using a history-based modelling system, through slot 2
should have been created before the rib (which is exactly the
history sequence that would make the resulting model of
Fig. 18a unfeasible).

Summarising, precedence numbers are revised after
every modelling operation. For this, precedence relations
are updated in the model, and a new sorting is
performed among all its features, which then get new
precedence numbers assigned, reflecting the new model
structure.

6. Feature model validity maintenance

Embedding validity criteria in each feature class, as
described in Section 4, enhances the modelling process in
the sense that at the creation of a feature instance its
semantics matches the specific requirements of its class.
However, this might no longer be the case when in any
subsequent operation, the shape imprint of the instance
would be arbitrarily modified, and therefore the latter should
be prevented by the modelling system.

Feature model validity maintenanceis the process of
monitoring each modelling operation in order to ensure
that all features conform to the validity criteria specified
in their respective classes [3]. Maintaining feature model
validity throughout the modelling process guarantees that
all aspects of the design intent once captured in the model
are permanently maintained. Together with the declarative
validity specification scheme described in Section 4, feature
model validity maintenance forms the core of the semantic
feature modelling approach.

The two basic principles of validity maintenance can be
summarised as follows:

1. A modelling operation, to be considered asvalid, should
yield a feature model that conforms to all constraints.
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This ensures that every feature in the model conforms to
the designer intent explicitly specified up to that moment.

2. After aninvalid modelling operation, the user is assisted
in overcoming the constraint violations in order to
recover model validity again. This can reduce the
frequency of backtracking by enlarging the choice of
possible reactions towards validity recovery. In partic-
ular, explanations on what is causing a constraint
violation, and context-sensitive corrective hints, can
significantly improve the modelling process.

Validity maintenance tasks can be classified into two types:
validity checking, performed at key stages of each
modelling operation; andvalidity recovery, performed
when a validity checking task detected a violation of some
validity criterion. These are now separately discussed in the
next two sections.

6.1. Validity checking

As mentioned above, the first basic principle of model
validity maintenance is that avalid modelling operation
should entirely preserve the designer intent specified so
far with each feature, as well as with all model constraints.
In other words, after a valid modelling operation, the feature
model conforms to all its constraints.

Modelling operations were introduced in Section 5.4, and
classified as feature operations and constraint operations.
The generic scheme of the execution of a modelling
operation is presented in Fig. 19, showing its main internal

steps. Also shown in the diagram are the various points at
which the operation can turn out to be invalid. Whenever
this occurs, the operation branches into thereaction loop,
instead of following the normal flow, and we say that the
model has entered aninvalid state. We now concentrate on
the description of the main steps in the diagram, and on the
circumstances under which specific invalid situations may
arise in each of these steps. An important goal here is to
enter the reaction loop, if required, with sufficient
knowledge of the current status of the model, so that it
can be appropriately handled, reported to the user and,
ultimately, overcome. The reaction loop itself will be
dealt with in the next section.

6.1.1. Dependency analysis
This step is only required for the removal of a feature

from the model. The removal of a featuref is only allowed
if f has no dependent entities (features or model constraints)
in the Feature Dependency Graph (otherwise, such
dependent entities would be left referring to a non-existing
graph node). In case there are entities dependent onf, they
are collected and the operation enters the reaction loop.

6.1.2. Interaction scope determination
The determination of thefeature interaction scope(FIS)

is performed at this stage, by collecting all feature instances
in the model that may potentially be affected by the oper-
ation. Its purpose is to optimise the interaction detection
phase (last step in Fig. 19), by avoiding checking features
that are known in advance to be left unaffected by the
operation [5].

6.1.3. Geometric and algebraic solving process
This step is required by all modelling operations, except

feature removal. Its goal is to determine or update the
dimensions, position and orientation of all features in the
model. This task is performed by the Constraint Manager,
which deploys two dedicated constraint solvers: a geometric
constraint solver based on extended 3D degrees of freedom
analysis [20], and a SkyBlue algebraic constraint solver
[33]. The iterative co-operation of these solvers is described
by Dohmen [14].

At this stage, modelling operations are considered invalid
if this solving process detects:

1. an overconstrained situation, i.e. some feature(s)
has(have) conflicting geometric and/or algebraic con-
straints; or

2. an underconstrained situation, i.e. the features and/or
model constraints specified, with the interface parameter
values provided by the user, are not sufficient to uniquely
determine and fix the degrees of freedom of all features in
the model [26].

In both cases, the operation enters the reaction loop.
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6.1.4. Dimension constraints checking
When the solving process is successfully concluded, all

feature shape dimensions have their values assigned, and
checking of all dimension constraints takes place. The
modelling operation is considered invalid if some feature
dimension parameter is out of the range specified by the
respective constraint.

6.1.5. Cellular Model evaluation
When this step is reached, each feature in the Feature

Dependency Graph has all its parameters successfully
updated. In particular, all feature shape extents have their
dimensions, position and orientation fully determined. The
Cellular Model may therefore be updated, so that the effects
of the operation are also reflected in the evaluated geometric
model. This process has already been described in Sections
5.5 and 5.6.

6.1.6. Interaction detection
Once the Cellular Model has been updated, detection of

disallowed feature interactions takes place. At this stage, a
modelling operation is considered invalid if any boundary or
interaction constraint is violated for some feature in the FIS,
previously determined. Details on the interaction detection
methods and algorithms can be found in Ref. [5].
Eventually, the set of constraint violations, if any, is
analysed, and their causes are identified and passed to the
reaction loop.

6.2. Validity recovery

When a modelling operation isinvalid, for any reason
pointed out in the previous section, a valid model should
be achieved again. This is straightforward if the modelling
operation is cancelled: all that is needed is to backtrack to
the valid model state just before executing it, by “reversing”
the invalid operation.

However, to always have to recover from an invalid
operation by undoing it is too rigid. It is often much more
effective to constructively assist the user in overcoming the
constraint violations, in order to recover model validity
again. In most cases, if the user receives appropriate feed-
back on the causes of an invalid situation, it is likely that
corrective actions other than undoing, which restore model
validity as well, might preferably be chosen.

We call this processvalidity recovery, and it emphasises
the importance of a user dialog in terms of features and their
semantics. Validity recovery includes reporting to the user
constraint violations, documenting their scope and causes,
and, whenever possible, providing context-sensitive
corrective hints. To achieve this, a corrective mechanism
was devised—thereaction loop, see Fig. 19—which is
activated whenever an operation turns out to be invalid.
The user can then specify several modelling operations in
a batch (typically editing features and/or model constraints),
and execute them, in order to overcome the invalid model

situation. Execution of thesereaction operationsfollows the
same scheme of Fig. 19, which means that their outcome is
analysed, checking for validity at each stage, just as for
“direct” modelling operations. The reaction loop is only
exited when, because of the specified reactions, all
constraints are satisfied again. At any stage when the
model is invalid, the user may give up attempting to fix it
by specifying more reactions, and backtrack to the last valid
stage, i.e. right before the first operation that entered the
reaction loop.

The specification of reaction operations is assisted by
automatically generated hints, which document each
constraint violation detected, and support the validity
recovery process. Documentation of constraint violations
varies with the operation step at which the reaction loop is
entered, and with the type of constraint involved. Referring
to the scheme of Fig. 19, we have the following:

Dependency analysis:The user is presented a list of all
entities that depend on the featuref to be removed, in
order to decide how to handle each of them. For example,
the user might choose to remove withf some of its
dependent entities, but to modify others, by making
them dependent on another feature.
Geometric and algebraic solving process:For both over-
and underconstrained situations, the reaction loop notifies
the user of where the conflict was found, highlighting the
features involved in a viewing camera. The user can then
make the appropriate corrections (typically, modifying
some of the features or constraints involved).
Dimension constraints checking:The user is notified
about the particular feature and parameter where the
conflict was found, as well as about the admissible
range for that parameter.
Interaction detection:For each interaction detected, the
user is notified of its causes (mostly the features creating
the interaction), and of its concrete effects (e.g. a feature
face or a parameter affected). According to the particular
interaction type (see Table 1 in Section 4), specific
reaction choices are given, for example:
◦ transmutation interaction—replace the transmutated

feature by another feature instance of the identified
feature class (for example, after enlarging the step in
the model in Fig. 1, the user might replace the blind
holes by through holes);

◦ geometric interaction—re-attach the feature affected,
by replacing its attach reference face with a parallel
face of the feature causing the interaction (an example
of this is given in the next section—Step 1);

◦ absorption interaction—remove from the model the
absorbed feature;

◦ splitting interaction—replace the split feature by two
(or more) instances of the appropriate feature
class(es).

In all cases above, the scope of the reaction choices made
available to the user is restricted to those features and model
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constraints that are somehow involved in the invalid
situation (i.e. features that overlap or have a dependency
relation with the affected feature). This helps the user in
concentrating validity recovery efforts on effective and
meaningful reactions.

7. Example modelling session

The usefulness of the validity checking and recovery
mechanisms is illustrated in this section with examples
taken from a modelling session with theSpiff system.
For this, we use a model that is a variant of the part
DEMO07, originally from ICEM-CDC, and made avail-
able at the NIST Design, Planning and Assembly Repo-
sitory [30], a large collection of parts from industry and
academia.

The user starts the modelling session by opening the
model (see Fig. 20). For each subsequent modelling step,
the invalid situation reported occurs because the underlying
feature classes do specify the violated validity criteria
reported at that stage.

Step 1(Fig. 21): The user creates a rounded pocket on the
top face of the model, overlapping with the pattern of
blind holes. As a result, one of the blind holes is totally
absorbed, whereas the depth of the other two is decreased.
The system reports these absorption and geometric

interactions, and the user corrects them by re-attaching
all three blind holes to the bottom face of the rounded
pocket, as shown in the model of Fig. 22a.
Step 2(Fig. 22): Next, the user attaches a cylindrical
protrusion on the top face of the model, covering the
top entrance of the through hole (see Fig. 22b). Because
the through hole becomes blind, the system reports a
transmutation interaction. To recover from this inter-
action, the user decides to re-attach the through hole,
from the top face of the block to the top face of the
cylindrical protrusion, making it a through hole again
(see Fig. 23a).
Step 3(Fig. 23): Subsequently, the user chooses a variant
of the part without the rounded blind slot, highlighted in
Fig. 23a, and issues its removal from the model. Because
both the through hole and the chamfer are attached to it,
the system requires these dependencies to be eliminated
prior to removing the blind slot. Removal of the depen-
dent features from the model and their modification are
among the possible reactions suggested by the system. In
this case, the user chooses to re-attach the through hole to
the bottom face of the block, and to remove the chamfer,
after which the model in Fig. 23b is achieved.
Step 4(Fig. 24): Finally, the user increases the width of
the step at the right-hand side of the model (see Fig. 24a).
Because the pocket, the cylindrical protrusion and, conse-
quently, the blind hole are positioned relative to the step,
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they are displaced accordingly. Consequently, the
cylindrical protrusion partially occludes the rounded
pocket, and this boundary clearance interaction is
reported by the system. As a reaction to this, the user
may readjust the step width, displace the cylindrical
protrusion or reduce its radius (or choose a combination
of these reactions), after which a valid model is achieved
again (see Fig. 24b).

8. Conclusions

There are several important characteristics that distin-
guish the semantic feature modelling approach from current
feature modelling approaches. In this section, these
approaches are compared on their merits.

The most salient characteristic of semantic feature
modelling is that the semantics of all features is well defined
and maintained during the whole modelling process. The
use of various constraint types for validity conditions in
generic feature classes allows specification of many semantic
aspects for the instances of each class. Among these
constraints, those specifying disallowed feature interactions
are of particular interest. User-added constraints can further
assist in capturing the user intent in a model. Once specified,
all constraints are maintained throughout model editing with
constraint solving methods. A mechanism is provided to
detect and analyse any invalid situation that might result
from some modelling operation, and to give the user an
explanation and hints to overcome this. So the user gets
valuable assistance in creating valid models only,
containing features with well-defined semantics only.

It might be argued that imposing rigid validity rules
reduces the modelling freedom of the user. For example,
the user might actually want to turn blind a through hole.
In current feature modelling approaches, this can be
achieved by simply closing one of the hole’s entrance
faces, e.g. with a protrusion, without the system objecting
to this. Therefore, even if no blind hole feature class is
available in the feature library, a blind hole can be created
by such a geometric construction. In the semantic feature
modelling approach, on the contrary, this modification can
only be made by adding the protrusion and, after the system
objecting against the transmutation of the through hole into
a blind hole, explicitly changing the through hole into a
blind hole. Obviously, this reaction is only possible if a
blind hole class is available in the feature library of the
system. So only models with features that are allowed, by
their inclusion in the feature library, can be created. This
example demonstrates how in semantic feature modelling,
by imposing restrictions on the modelling freedom, the user
is assisted in creating valid models only.

A correspondence with programming languages can be
noted here. Geometric modelling, but also current feature
modelling practice, is in a way comparable to the use of
low-level programming languages, with low-level
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operations. Such languages offer much freedom in what can
be programmed but, as a consequence, errors can easily
occur, and the programmer has much responsibility in
getting a program correct. Semantic feature modelling, on
the contrary, is comparable to the use of high-level
programming languages, such as object-oriented languages,
providing high-level operations with well-defined and
powerful semantics. Practice has shown that programs in
such languages contain fewer errors, i.e. correspond better
to the user intent of the programs. The loss of “programming
freedom” in these languages is commonly accepted because
of the advantage of being forced to create more meaningful,
less error-prone programs. Similarly, we believe that the
loss of “modelling freedom” in semantic feature modelling
is acceptable because of the advantage of being forced by
the system to create more meaningful models.

In addition to offering much better facilities for speci-
fying and maintaining feature semantics in models,
semantic feature modelling solves several other problems
that occur in current feature modelling systems. In partic-
ular, there is no longer a dependency on the chronological
order in which features are added to a model. This results in
a significant improvement in model modification and
dimensioning facilities. Shortcomings originating from the
persistent naming problem in history-based modelling are
also avoided, because all modelling operations work on
feature faces, instead of boundary model faces, and, there-
fore, ambiguities in names cannot occur. Stated differently,
in semantic feature modelling the semantics of modelling
operations is in this respect well defined, in contrast with
history-based feature modelling.

The Cellular Model has several properties that make
it very suitable for the geometric representation of
feature models. In particular, the evaluation and inter-
pretation of the Cellular Model are independent of the
chronological order of feature creation, which solves
several problems inherent to history-based modelling.
Further, the Cellular Model contains all information
required for interaction detection, and deals with subtractive
and overlapping features in a consistent way during model
editing.

The structure of the Cellular Model is certainly more
complex than that of a manifold boundary representa-
tion, commonly used in current feature modelling
systems. In addition, attribute storing and propagation
mechanisms demand some additional processing not
required by set operations on such a boundary represen-
tation. However, this is far outweighed by the perfor-
mance improvement of incremental re-evaluation of the
Cellular Model.

Building the whole Cellular Model from scratch has a
computational cost that is roughly proportional to the
model history size, as is the case for boundary re-evaluation
in history-based modelling. Fortunately, this is only
required when the Cellular Model needs to be built in one
step, e.g. when starting a modelling session with a
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previously created model file. Once this has been done, the
computational cost of re-evaluating the Cellular Model after
a modelling operation is not dependent of the total number
of features in the model, but on the number of features
whose geometry is actually affected by the operation.
Usually, this number is very limited, so computational
cost is minimised.

The semantic feature modelling approach has been
successfully implemented in theSpiff system. The imple-
mentation offers the full functionality described in this
article. In particular because of the integration of the Cellu-
lar Model with the constraint solvers, interactive modelling
of complex models, as used in some of the examples, turned
out to be easily feasible.

To conclude, it has often been remarked that
feature modelling is nothing more than advanced geometric
modelling, only offering parametric and constraint-based
modelling facilities in addition to the common geo-
metric modelling facilities. This article, however, shows
that semantic feature modelling is significantly more power-
ful than current feature modelling approaches, and
effectively brings feature modelling to a much higher
level than geometric modelling, not only with regard to
applications, but also with regard to modelling facilities.
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