
Prof. Dr.
Reinhard König Junior

Professorship
Computational
Architecture

Page 12

45 if (events.Count > 0)
46 {
47 intersect = true;
48 }
49 }
50 else // -- remember the index of the original rectangle
51 origID = collectRectangles.IndexOf(curTestRect);
52 }
53
54 // -- decide what to do if there is an intersection
55 if (intersect)
56 {
57 Print(“intersect”);
58 toRemoveRects.Add(curRect); // if it can’t grow further,
 remove element
59 grownRectangles.Add(curRect);// add element to the fi nal list
60 }
61 else
62 {
63 Print(“grow on”);
64 growCadidates[i] = copyRect; // assign new size for
 intersection test
65 collectRectangles[origID] = copyRect; // assign new size for
 imtersection test
66 }
67 }
68
69 // -- remove rectangles which can not grow anymore
70 foreach(Rectangle3d delRect in toRemoveRects)
71 {
72 growCadidates.Remove(delRect);
73 }
74
75 Print(“iteration “ + counter.ToString());
76 counter++;
77 } while(growCadidates.Count > 0 && counter < maxIterations);
78
79 // -- extrude the rectangles
80 foreach(Rectangle3d curRect in grownRectangles)
81 {
82 // -- convert the recangle to a nurbs and create a planar Brep
 Surface in Rhino
83 NurbsCurve myCurve = curRect.ToNurbsCurve();
84 Rhino.Geometry.Extrusion myExtrusion = Extrusion.Create(myCurve,
 rnd.Next(5, 20), true);
85 collectBreps.Add(myExtrusion);
86 }

From line 55 we implement the rules, what to do if there is an intersection or
not. In the list toRemoveRects we collect all rectangles which have reached
their maximum size and shall be removed from the growCadidates list after
the for loop. It is important to know that we can not remove elements from a
list which we currently iterate through. Therefore the elements are removed
afterwards in the foreach loop starting at line 70.

The assignment of the copyRect with the new size to the original list collec-
tRectangles in line 65 is important for comparing the new sized rectangles
with the further growing ones in the next iteration.

The do loop is repeated until the condition
while(growCadidates.Count > 0 && counter < maxIterations); is met.
This means we repeat the loop as long as all items from the growCadidates
list are removed or until a counter reaches a certain maximum value. The
counter is just used for security to avoid endless looping in case the growCa-
didates list will never be empty for some reasons.

With the rest of the code you are already familiar with. The resulting geome-
try is shown in the fi gure on the next page.

Now it’s time for your explorations!

