Exercise: CE_cpp01 — C++ Plug-Ins for Rhino

Topic C++ Plug-In Development for Rhino

- Setting up of a development environment in Windows
using Visual Studio, environmental variables, batch files
- Introduction into Rhino C++ Plug-In projects:
concepts, basic implementation, debugging,
system architectural issues
- Creation of oriented bounding boxes

learning target

Instructions

In this exercise you will learn to set up a plug-in project for Rhinoceros using a
Visual Studio 2010 development environment.

The purpose of this small example plug-in will be to create an oriented bounding
box (OBBox) on a surface model. A OBBox has in general of smaller volume than a
classical bounding box and approximates the real geometry better. Thus, helps to
speed up various geometrical algorithms.

You will also learn how to perform bounding box intersection test on oriented
BBoxes and in which algorithms these kind of bounding volumes are beneficial.

Comparison of classical bounding box (blue) and oriented bounding box (red)

Pre-Requisites and Remarks

All necessary software and third-party dependencies (libraries,...) used in this
exercise are either provided or are already installed on the computer in the CIP-
Poal.

1] Project template

Please download the project template to your local drive, in which you are
supposed to do your code implementation. You will find it either on the P:\ drive,
in case you are in the CIP-pool:

P:\LS_ComputationinEngineering\552016_ComputerAidedDesign,
CompExercise\Code\Rhino5_cPP_API CIP

Or you can download the project files from the following link:
https://syncandshare.lrz.de/d|/fiRQSBalLG4EnMzb3onxEgELS/Rhino5 cPP APl loc

al.zip

Please make sure you downloaded the template project after this exercise sheet
was handed out!

2] Start the template project

You are provided an entire solution directory by downloading the content from
the link given above.

Copy (and unpack) the folder to your private user drive, where you have
reading/writing rights. In the CIP-pool this will be your user dive (e.g. Go to
<Computer> <..TUMID...>).

The solution directory should contain a Visual Studio solution
“set_RhinoPlugIN_vc10.sln" and a batch file called “set_RhinoPlugIN_vc10.bat”,

Start the visual studio solution ONLY by using the batch file (double click)!

If this does not work, please contact your supervisor!
By double click on the file “set RhinoPlugIlN_vc10.bat” Visual Studio should start

automatically.

Pre-Requisites and Remarks

3] Working on your private computer

In general it is possible to work on your private computer, if the following pre-
requisites are fulfilled and the software stated in the following is being installed:

~ 05: Windows 0S 64 bit
» Visual Studio 2010 (with C++ compiler 64 bit)

~ Rhino 5.0 64bit SDK; downloadable here:

http://www.rhino3d.com/download/rhino-sdk/5.0/commercial

+~ Rhino 5.0 64 bit: a suitable free evaluation version can be found here:

http://www.rhino3d.com/download/rhino/5.0/evaluation

To make the provided software framewaork run on your local machine you have to
set some paths by hand to fit your local installation configuration. You will find

further instructions on the next page.

Please contact the course lecturer in case of any technical difficulties!

.. Not matter if on your local machine or the CIP computers...

Instructions

» Start the template project “set_RhinoPlugIN_vc10.sIn” you are provided (see
page before) in your solution folder by double clicking on the batch file
“set_RhinoPlugIN_vc10.bat”.

In case you work in the CIP Pool, the project should open in Microsoft Visual
Studio without errors or problems.

Remarks:

1) if you work in the CIP Pool, but the previous step fails, please contact your
supervisor!

2) If you work on your private computer the following steps are necessary:

a) Go to the folder “\ Env” inside the downloaded solution folder.
b) <right click> on the file “Rhino_Env.bat” and choose <edit>
You might have to adjust the paths pointing to your Rhino and Rhino SDK
installation.
c) Perform the same for the file “set_vs_2010_amd64env.bat”.
The paths to your Visual Studio installation might have to be adjusted.

~ To test the solution environment, perform the following steps:
<right click on “Solver”> in your project explorer and choose <rebuild=>. This
part of the provided solution should compile without errors.
If this is not the case please contact your supervisor!

gIM_wiclD® (2 Projekie)

Meuw erstellen
P *
& Ausschneiden Strg+ X
y Enfagen StrgeV

X Entfernen Entd
Umbenennen F2
I-'=|.'=_|s kt srmewt laden

H.Ema rk: Projekiz im Projekimappencrdner entladen

Initially the entire solution will not compile yet!

You have to implement some parts before this will be possible.

After your job is done you can compile the entire solution by either pressing <F7>
or <right click> on the Solution “set_RhinoPligIN_vc10” and choose <Build
Solution>.

Instructions

» To test your template plug-in project, after you coded and the solution
compiles. You should start Rhinoceros out of your Visual Studio solution. This
should happen automatically if you press <F5>,

If Rhinoceros does not start, perform the following steps:

a) <right click> on the project “CiERhinoPlugin” and choose <Properties>.
b) Go to “Debugging” and check if in the field “command” the following
is written. If this is not the case replace any entry by the following:

S(RHINOPATH)\Rhino.exe

Solution Explorer 0
(4 Solution ‘set_RhinoPlugiM_vcl' (2 projects) |

Twn
e Gy
Lok ste € e
Nk et etmcann
Pt Daparciesin T
g d Ui
B Do b
44
B

B O Wl (R

dy Vorm S Dagrare]
e g Pt
Tt

e sk 3ckutios e Soumar Comirede
& G
Eewee H
i ok
i oy s Db i
f-.!.] ') |

i

Then itis time to make your plug-in known to Rhinoceros by installing it.

Type in _PluginManager in the command line of Rhinoceros.
The plug-in manager should start. Choose <Install> and select the file
“CiE_RhinoPlugin.rhp” located in your solution folder under “.\x64\plugin\,”.

If everything succeeded can be tested by typing the command
_CiERhinoPlugin. A message box should appear.
If this step fails, please contact your supervisor!

Licsrman

[Smme b

o
% Meoding e 20 Espn El
Vo [BID#: Spdrn Systmms DonkeFrota £
Pegra [[——— -
Frslesg Altupscann - =
P Rl Dt -
Phicaiena N
Lmieoe Meru
o Todk [#] 4 12 nad dinabiec plgin
Upelabas. ol Basdoteis.

Fhinocero: 50 CERhinoPhigin

(]

¥ou entered the “CiERhinoPlugin® base command, On first loed a CiE plugin

*GiELab” merw shall be loaded.

Instructions and Workflow

» The steps performed before need to be done only once.
However, you can run the plug-in only after it compiles, which requires some
programming tasks performed by YOU!

» For those who are interested in the theoretical background, the general
outline of the solution workflow to create a oriented bounding box is the
following.

1] Select surfaces in your model to be fitted by an oriented bounding box.

2] Create a temporary mesh on the surfaces to be fitted by the oriented
bounding box.

We will use the Rhino meshing features to perform this step.

3] We will use the mesh vertices to analyze a 3x3 so-called
covariance matrix known from statistical methods:

COV(i,j) = E[(xi - M_i)*(xj — M_j}]

M_i=E[xi] denotes the barycenter of the point set
E[*] denotes the expectation operator

We are interested in the eigenvectors of this matrix to
define a plane fitting the given point set (points of mesh vertices).

We will make use of a external linear algebra library to perform this steps.

4] Given this plane we can set this plane as a construction plane (CPlane)
and transform all coordinates of the mesh points with respect to the
Cplane’s local coordinate system.

Thus, we can find the min/max values in local coordinates.

A back transformation gives us finally the oriented BBox w.r.t. the global
coordinate system.

Furthermore we will have to implement an intersection algorithm for the
oriented bounding boxes.

You will be guided step by step through the necessary steps.

Instructions
» Now we can start implementing the missing code pieces to create an oriented
bounding box.

Open the file “cmdCiEBBox.cpp” in visual Studio (VS) from the solution
browser (by <double click>).

| Paziriigeg an-Lapha v = A K N emalbbBmcpp o QRTINS

E =1 Rlar-y {Tcbasr Gungbmiibarncn| =

TN 3 Promemmapps “w_frenceiugii o (2 Popkte)
g Sakowr
-
« 5 CiRresFlegn
il Etamis Abhiing gotitens
l echade
O Bk 3
S 20 b eless Dipemend{iES®ex 1 public Cbinelpemund
] CillPteroMugndsp.cns =L
A) F bl
(2] Blznipg * OlesmancCipEmani] [}
~{ComasraCiEBRan] | []

o4 el CRPMC. i

- 2 F= Wil CommansiAILE |
o crr PP cpp . H '
& mdatacpp + ERTERENS T < LB 1 S0 A 7 I8 . DR RSO BETAE 1)
H| G naRlugn.cet 2 + stetbc const GUID O-dentediBasiommard LUID =
5 CiEthnaPlugron - { SuSaiamai?, @a38C), Bedith, | BsET, S0, Bald, BaiE, @D, Swl0, e, @sii o))

B CifthincPugn.d - + rekurn Orles tedd SoxCommand_LUTD;

T T LT e T L R L T |

This file holds the code for the command to generate our bounding boxes if
the user will type the command CiEBBox in Rhino.
The user will be asked to give several options used for the generation of a
BBox, in particular the type of BBox: a classically axis aligned or oriented box.

Tounderstand how the interaction with the GUI of Rhino works, have a look
at the lines 55 to 146.
And to understand how the user can select objects, check the lines 153-181.
You do not have to program here, but for later you should understand the
procedure in principal.

Uncomment the lines 196-197 and 210-213.
Here two important routines are called to compute and visualize the
bounding boxes.
Jump to the declaration of the function “doVisualBBox()” (<right click> on
“doVisualBBox()"” and <go to definition>).
If this does not work, simply open the file “TGFRhinoPlugin_BBox.cxx “ within
VS and go to line 83.

This is our first task:
You shall visualize a box in Rhino by given corner points. See further
instruction in the code. Use also this help documentation:

http://wiki.mcneel.com/developer/sdksamples/addbrepbox

-~

Instructions

Second Task:

After the visualization of a bounding box is done, we have to implement the
creation of the bounding boxes, both classical axis aligned and oriented.

First get familiar with the class structure of our data model. Therefore have a
look at the files:

TGFRhinoPlugin_BBox.h

TGFRhinoPlugin_ALLBBox.h

TGFRhinoPlugin_OrientBBox.h

CiEPlg_BBox

// purely abstract class

CiEPlg_ALLBBox CiEPlg_OrientBBox
// non-abstract axis // non-abstract oriented
// aligned box // bounding box

We have a purely abstract base class, and two non-abstract classes for axis
aligned and oriented BBoxes.

In the file “TGFRhinoPlugin_BBox.h” in lines 85 to 88 you will find those
functions which have to be implemented by all derived classes to become
non-abstract. Unless implemented the code will not compile!

So go to the file “TGFRhinoPlugin_ ALLBBox.h” and uncomment the line 56
and 61.

Go to the file “TGFRhinoPlugin_ALLEBox.cxx” to lines 55 te 102. Uncomment
the member routine computeBBox(..) and implement the missing pieces as
described in the code, to create a classical BBox.

Then go to lines 110 to 151. Uncomment the member routine

BBoxIntersection (..) and implement the missing pieces as described in the
code.

-~

Instructions

Third Task:

Now we have to implement the algorithms for the generation of oriented
bounding boxes. The theoretical background is given in the course material.

At first, we have to generate meshes of selected object. We will use the Rhino
meshing tools. Go to the file “TGFRhinoPlugin_ Meshing.cxx”. In line 18 to 21
you have to make use of the Rhino meshing tools.

You will find a helpful link within the code.

Fourth Task:

Now we are ready to finish the oriented bounding box algorithm. Open the
file “TGFRhinoPlugin_OrientBBox.cxx” and go to lines 81 to 361.

Some pieces of the pipeline to generate oriented BBoxes are missing.
Implement them as stated in the code. In particular check the lines:

line 147
line 157
line 275
line 303

Also try to follow the overall pipeline to understand the procedure.

Fifth Task:

Open the file “cndCGIEPMC.cpp”.

You will have to prepare this file for an lecture exercise (not being part of the
midterm!).

Here we want to make use of oriented bounding boxes within a PMC := point
membership classification algorithm, which determines if a point is inside or
outside of a volume.

See the code at lines 51 following for further instructions. In principal the
following tasks are to be solved:

- let the user pick a point

- let the user pick a volume

- let the user set some options (e.g. whether to use a Oriented BBox)
- pass everything to another routine.

