The Straus’ Application Programming Interface (API) allows programmers to interface
their code to Straus?7. This makes it possible to create a program that can access
geometric and result data from Straus7 models. Data obtained can then be used by the
program for display or further processing.

The Straus7 APl consists of a Dynamic Link Library (DLL) file (St7APLdIl) and a number of
header and include files. The DLL file contains functions that can be used to: read
Straus? finite element data; modify or create Straus? finite element data; launch the
Straus? solvers; and read Straus? result data.

The header files allow external programs to communicate with $t7APLdIl. They define all
the constants used and the function calling conventions for each language supported
(all functions in the Straus7 APl use the Windows calling convention “stdcall”). A different
set of header files is needed for each language (e.g. Delphi, C++, Fortran, etc). Note
that in some cases, header files are even compiler product dependent - e.g. the header
files for Visual Fortran will be different to the header files for Lahey Fortran. Release 2.4.6
comes with header files for Delphi, C/C++, Compag/Intel Visual Fortran, Lahey Fortran,
Microsoft Visual Basic (including VBA), Microsoft Visual C# and Matlab. New header files
are being added to meet user requirements — please contact us if you need header files
for a different language.

The majority of this documentation is devoted to describing each of the functions in the
Straus7 API. The C syntax for the available functions is given, along with the input and
output parameters and example code.

The remainder of the documentation lists error codes and conventions and types for
property information, attributes and results.

For compiler specific information, see the Using the Straus7 APl section.

The Straus7 API file St7API.d11 must be located in a directory where it can be
found by the calling program. This means that STt7API.d11 must be in a directory
that is within the Windows search path. Alternatively, it is possible to specify where
the DLL is located via the Windows AP| function LOADLIBRARY. See the Win32 API for
more information about this.

To cdll the functions in the API, an interface file that declares the exported function
callsin St7API.d1l1 is needed. This file is provided in the Straus7 APl Toolkit and its
name is dependent on the compiler;

St7APICall.pas for Delphi

St7APICall.h for C/C++ and Matlab
St7APICall.vb for Microsoft Visual Basic
St7APICall.bas for Microsoft Visual Basic 6 and VBA
St7API.cCs for Microsoft Visual C#

St7APICall.f90 for Fortran



As most of the APl functions employ pre-defined constants, these are conveniently
defined within an external file in the Straus7 API Toolkit. It is not essential that you use
this file, especially if you prefer to declare your arrays as 1-based instead of the 0-
based approach used. The name of the constants file is dependent on the compiler:

St7APIConst.pas for Delphi
St7APIConst.h for C/C++
St7APIConst.vb for Microsoft Visual Basic

Linking to the API with Visual Basic

There are two source files included in the API Toolkit — these are St7APICall.vb and
St7APIConst.vb as described above. To use these files add them fo your project.

API Strings and Visual Basic

The Straus7 APl uses null-terminated strings. These are always declared as ByVal
StringName As String.To pass asiring fo the API, declare it as Dim StringName
As String and assign it a value, Visual Basic will ensure that the string is null-tferminated
when you pass it as an argument. When you need fo get a sfring value back from the
API, the sfring must be pre-allocated and this is no longer possible in Visual Basic without
assigning it a value. It is therefore necessary to assign the string a value with a length
longer than the specified string length prior to passing to a function that writes to it.
When the string is refurned it is also necessary to discard all characters from the first
CHAR=0 to the end of the string.

API Arrays and Visual Basic

Many Straus/ API functions use arrays of longint or double as parameters. These are
always passed by reference and declared as ByRef LongArray As Long orByRef
DoubleArray As Double.The amray passing syntax LongArray () As Long or
DoubleArray () As Double should not be used with the Straus7 API. The arrays to be
passed should be declared as Dim LongArray (n) As Long or Dim

DoubleArray (n) As Double, where nis some integer value. When passing these
arrays to a Sfraus7 APl function via Visual Basic, it is essential that the first index of the
array be passed. The following example further illustrates the correct procedure:

function declaration:
Declare Function St7GetNodeXYZ& Lib "St7API.DLL" (ByVal ulD
As Long, ByVal NodeNum As Long, ByRef XYZ As Double)

variable declaration:
Dim XYZ (2) As Double

function call:
ErrorCode = St7GetNodeXYZ (1, NodeNumber, XYZ(0))



API Boolean and Visual Basic

Many Straus7 APl functions use boolean or arrays of boolean as parameters. These
should always be passed as Byte in Visual Basic, (both by value and by reference). This
is necessary because the Straus7 APl uses single byte boolean representation, which is
compatible with the Visual Basic Byte type. The Visual Basic Boolean type is two bytes

long, therefore not compatible. True boolean values will therefore be represented by
Byte=1 and False boolean values will be represented by Byte=0.



