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Abstract 

This paper considers the geometric optimization problem of finding the Largest area axis-parallel Rectangle 
(LR) in an n-vertex general polygon. We characterize the LR for general polygons by considering different 
cases based on the types of contacts between the rectangle and the polygon. A general framework is presented 
for solving a key subproblem of the LR problem which dominates the running time for a variety of polygon 
types. This framework permits us to transform an algorithm for orthogonal polygons into an algorithm for non- 
orthogonal polygons. Using this framework, we show that the LR in a general polygon (allowing holes) can be 
found in O(n log 2 n) time. This matches the running time of the best known algorithm for orthogonal polygons. 
References are given for the application of the framework to other types of polygons. For each type, the running 
time of the resulting algorithm matches the running time of the best known algorithm for orthogonal polygons 
of that type. 

A lower bound of time in ~ ( n  log n) is established for finding the LR in both self-intersecting polygons and 
general polygons with holes. The latter result gives us both a lower bound of ~ ( n  log n) and an upper bound of 
O(n log 2 n) for general polygons. 
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1. Introduction 

The problem of finding the Largest area axis-parallel Rectangle (LR) inside a general polygon 4 of 
n vertices is a geometric optimization problem in the class of polygon inclusion problems [7]. Define 
Inc(79, Q,#): given P E 79, find the /z-largest Q E Q inside P, where 79 and Q are families of 
polygons, and/z is a real function on polygons such that 

VQ, Q ' E Q ,  Q ' C _ Q ~ # ( Q ' ) ~ < # ( Q ) .  

Our problem is an inclusion problem where Q is the set of axis-parallel rectangles, 79 is the set of 
general polygons, and # gives the area of a rectangle. 

This rectangle problem arises naturally in applications where a quick internal approximation to a 
polygon is useful. It is needed, for example, in the industrial problem of laying out apparel pattern 
pieces on clothing "markers" with minimal cloth waste [22,23] (see Section 6). 

1.1. Related work 

Despite its practical importance, work on finding the LR has been restricted to orthogonal polygons 5 
[4,20,30] and, recently, convex polygons [5] (see Fig. 1). Amenta [5] has shown that the LR in a convex 
polygon can be found in linear time by phrasing it as a convex programming problem. For a constrained 
type of orthogonal polygon, Aggarwal and Wein [4] give a O(n) time algorithm for finding the LR 
using the monotonicity of an area matrix associated with the polygon. 

McKenna et al. [20] use a divide-and-conquer approach to find the LR in an orthogonal polygon in 
O(n log 5 n) time. For the merge step at the first level of divide-and-conquer, they obtain an orthogonal, 
vertically separated, horizontally convex, polygon 6. At the second level, their merge step produces an 

4 A general polygon is a polygonal region in the plane with an arbitrary number of components and holes. A rectangle is 
inside if  it is a subset. The rectangle can share part of its boundary with the polygon's. 

5 We use O'Rourke's definition: "an orthogonal polygon is one whose edges are all aligned with a pair of orthogonal 
coordinate axes, which we take to be horizontal and vertical without loss of generality" [25]. In the context of this paper, 
this might be called an axis-parallel polygon. 

6 The boundary of a vertically separated polygon consists of two chains which extend from the highest point of the 
polygon to the lowest point and which are on opposite sides of some vertical line. A horizontally convex polygon contains 
every horizontal line segment whose endpoints lie inside the polygon. For a vertically separated, horizontally convex polygon, 
the two chains are y-monotone. 
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orthogonal, orthogonally convex polygon 7, for which they solve the LR problem in O(n log 3 n) time. 
They also establish a lower bound of time in ~ (n  log n) for finding the LR in orthogonal polygons 
with degenerate holes, which implies the same lower bound for general polygons with degenerate 
holes. 

McKenna et al. note, without giving details, that the LR in an orthogonal polygon can also be found 
using the more complicated O(n log 3 n) time divide-and-conquer algorithm of Chazelle et al. [9] for 
the Largest Empty Rectangle (LER) problem. The LER problem is stated as follows: given a rectangle 
containing a set S of n points, find the largest area rectangular subset, with sides parallel to those of the 
original rectangle, whose interior contains no points from S [9,24,2]. Chazelle et al. observe that the 
running time of the merge step of their algorithm is dominated by the Largest Empty Corner Rectangle 
(LECR) problem: given two subsets Sleft and Sright o f  S ,  find the largest rectangle containing no point 
of S which has lower-left comer in Sleft and upper-right comer in Sright. The fastest solution to LECR 
is Aggarwal and Suri's O(n log n) time algorithm, which they present as part of an O(n log 2 n) time 
solution to the LER problem [2]. Their LECR algorithm relies on fast searching of area matrices. 

We observe that a speed-up in the LECR algorithm automatically improves the running time for 
finding the LR in an orthogonal polygon. This speed-up occurs because a fast LECR algorithm im- 
plies a fast algorithm for the Largest Comer Rectangle (LCR) in an orthogonal, vertically separated, 
horizontally convex polygon 8. Computing the LCR, in turn, dominates the running time of the LR 
problem for orthogonal, vertically separated, horizontally convex polygons. Finally, as we have pre- 
viously stated, this special case is required for the merge step of a divide-and-conquer algorithm for 
general orthogonal polygons. Thus the O(n log n) time algorithm for LECR yields an O(n log 2 n) time 
algorithm for finding the LR in an orthogonal polygon. 

The O(n log 3 n) time algorithm of [20] for orthogonal, orthogonally convex polygons can also be 
improved by applying recent results in fast matrix searching. Aggarwal and Suri [2] note that, for 
the LECR problem which can be associated with the vertices of this type of polygon, there is a 
corresponding area matrix whose maximum can be found in O(n log n) time by decomposing it into a 
set of simpler area matrices. They note in [3] that Klawe and Kleitman's results [17] for this simpler 
type of matrix imply O(no~(n)) search time for the more complex matrix, where c~(n) is the slowly 
growing inverse of Ackermann's function. It is easy to see that this yields O(no~(n)) time for finding 
the LR in an orthogonal, orthogonally convex polygon. 

Melissaratos and Souvaine [21] use the visibility techniques of [15] to solve several geometric 
optimization problems. In particular, they find the largest triangle contained in a polygon in O(n 4) 
time by considering the types of contacts between the polygon and the triangle. A similar approach 
can be applied to the LR problem by using the concept of rectangular visibility 9 [27], but this leads 
to an O(n 5) algorithm, which is much slower than the O(n log 2 n) one we propose in this paper. 

7 An orthogonally convex polygon is both horizontally and vertically convex. This class contains the class of convex 
polygons. 

8 The LCR of an orthogonal polygon is the largest area rectangle with diagonally opposite comers on the boundary of 
the polygon. Our definition of LCR for non-orthogonal polygons is somewhat more specific (see Section 3). 

90vermars and Wood [27] define rectangular visibility as follows: "given a set of points S in the plane, a point p is said 
to be rectangularly visible from a point q with respect to S if and only if there exists an orthogonal rectangle/~ that contains 
both p and q, but no other point of S". We use a slightly less restrictive version of rectangular visibility (see Section 3.2). 
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Another possible approach to the LR problem involves Voronoi diagrams, but it is unlikely to produce 
an algorithm faster than O(n log 2 n). Chew and Drysdale [10] discuss using a Voronoi diagram of a 
point set, based on a convex distance function, to find the associated largest empty convex shape. 
Chazelle et al. [9], in their work on the Largest Empty Rectangle problem, cite the use of a Voronoi 
diagram in the L ~  or L1 metric [19,16] to find the largest empty axis-parallel square for a point 
set. Aurenhammer [6] notes that a transition from squares to rectangles is complicated because the 
distance function depends on the aspect ratio of the rectangle, which is unknown. Chazelle et al. 
[9] use a Voronoi-like diagram to solve the LECR problem. However, this approach is slower than 
Aggarwal and Suri's LECR algorithm [2], which is based on fast matrix searching. In order to use 
Voronoi diagrams to solve the problem treated in this paper, one would need a generalized Voronoi 
diagram, often called the medial axis [26,18] of a polygon. Since the fastest algorithm for the Largest 
Empty Rectangle problem (for point sets) is not based on Voronoi diagrams, we doubt that using such 
a generalized Voronoi diagram would yield an algorithm faster than the O(n log 2 n) one we present 

in this paper. 
No published algorithm is known for finding the LR in a general non-orthogonal polygon with 

(non-degenerate) holes, nor has a lower bound tighter than f~(n) been established. 

1.2. Overview 

We present the first algorithmic results for general polygons with holes: an O(n log 2 n) time al- 
gorithm. We also prove a lower bound for this type of polygon of time in f~(n log n). The divide- 
and-conquer approach used for finding LRs in orthogonal polygons is applicable to non-orthogonal 
polygons, but it is a challenge to deal with the special cases of the LR problem that arise during the 
merge step. As is the case for orthogonal polygons, the running time is dominated by the LCR (Largest 
Comer Rectangle) problem for vertically separated, horizontally convex polygons. Unfortunately, for 
non-orthogonal polygons, it is not so easy to reduce the LCR problem to an LECR problem. For this 
reason, we present a general framework which can be used to transform LCR problems for several 
types of non-orthogonal polygons into LCR problems for "partially orthogonal" polygons. The frame- 
work shows how to modify an LECR algorithm to solve these special LCR problems. This framework 
allows us to achieve the same LR time bounds for the non-orthogonal case as has already been achieved 
for the corresponding orthogonal case. In this paper, we apply the framework to vertically separated, 
horizontally convex polygons to obtain an O(n log 2 n) time algorithm for general polygons. In [12] we 
apply it to find the LR of: an xy-monotone polygon l0 in @(n) time, an orthogonally convex polygon 
in O(na(n))  time and a horizontally (vertically) convex polygon in O(na(n) log  n) time. 

Our paper is organized as follows. In Section 2 we characterize the LR for general polygons by 
considering different cases based on the types of contacts between the rectangle and the polygon. In 
Section 3 we present a general framework for solving the 2-contact case of the LR problem, which 
dominates the running time for a variety of polygon types I1. The framework involves transforming 
the polygon, via vertex projection and inner orthogonal approximations, into a "partially orthogonal" 

m A simple polygon consisting of two xy-monotone chains is an xy-monotone polygon. A chain is xy-monotone if it 
is monotone with respect to both the x and y axes. A chain is monotone with respect to a line 1 if a line orthogonal to 1 
intersects the chain in exactly one point [28]. 

11 The 2-contact case is equivalent to a constant number (eight) of LCR problems. 
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Fig. 2. Algorithmic results. 

polygon for which we can solve the associated LCR problem by solving a modified LECR problem. 
The LECR problem is solved efficiently using fast matrix searching techniques from the literature. 

Section 4 presents an O(n log 2 n) time divide-and-conquer algorithm for finding the LR in a general 
polygon with holes. Our 2-contact framework is applied to solve the 2-contact case for a vertically 
separated, horizontally convex polygon. This type of polygon arises in the merge step, and finding 
its LCR and LR dominates the running time of the divide-and-conquer algorithm. We show that its 
LR can be found in O(n log n) time. This O(n log n) algorithm uses the results of Aggarwal and Suri 
[2,3] for the LECR problem. Our running time results are summarized in Fig. 2. 

In Section 5 we prove a lower bound of time in f~(n log n) for finding the LR in both self-intersecting 
polygons and general polygons with holes. The latter result gives us both a lower bound of ~ (n  log n) 
and an upper bound of O(n log 2 n) for general polygons with holes. It uses symbolic perturbation to 
extend the ~2(n log n) lower bound of McKenna et al. for orthogonal polygons with degenerate holes. 
The proof for self-intersecting polygons involves a reduction from MAX-GAP. This f~(n log n) lower 
bound clearly demonstrates that the LR inclusion problem is harder than the corresponding smallest 
rectangle enclosure problem, which has a trivial linear time algorithm. 

Section 6 discusses LR applications. 

2. Characterizing the LR 

In this section we characterize the LR contained in a general polygon P by considering different 
cases based on the types of contacts between the LR and the boundary of P. We outline a naive 
algorithm for finding the LR based on this characterization. Others have used contact classification for 
algorithmic development (see, for example, [21,20,13]). 

2. I. Types o f  contacts 

Intuitively, if an axis-parallel rectangle is inside P, it has four degrees of freedom (parameters) and 
can "grow" until each of its four sides is stopped by contact with the boundary of P. Contacts between 
the rectangle and P are of two types: (1) a side of the rectangle with a vertex of P,  and (2) a comer 
of the rectangle with an edge of P. In order to discuss the first type, we require the notion of a reflex 
extreme vertex, introduced in [29]. 
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(a) Fixed contact (b) Independent 
sliding contact 

(c) Two dependent 
sliding contacts 

Fig. 3. Edge contact types for a determining set. 

Definition 2.1. A vertex v of P is a vertical reflex extreme vertex if exterior(P) has a local vertical 
line of support at v: for some e > 0, the vertical line segment of length e and with midpoint v is a 
subset of P (boundary plus interior). A horizontal reflex extreme vertex is defined similarly. 

For type 1 contacts, a reflex extreme vertex of P touches a side of the rectangle and stops growth in 
one direction; we call this a reflex contact. Each reflex contact can remove one degree of freedom. Two 
reflex contacts with adjacent sides of the rectangle fix a comer of the rectangle. For type 2 contacts, 
a comer of the rectangle touches an edge of P forming an edge contact. 

2.2. A determining set of  contacts 

Definition 2.2. A set of contacts U is a determining set of  contacts if the LR R satisfying C has finite 
area and if the LR R'  satisfying any proper subset C t C U has greater or infinite area. 

For example, a set of four reflex contacts, one on each side of the rectangle, is a determining set. 
Note: a determining set determines the area of the LR, but it does not necessarily determine a unique 
rectangle or LR. 

Within a determining set, we distinguish between two different subtypes of edge contacts. An edge 
contact is fixed if the set of constraints uniquely determines the point of contact with the rectangle. 
Otherwise, it is a sliding contact. Note that we are considering here the set of all rectangles which 
satisfy the determining set of contacts, and we are not just considering rectangles of maximal area. 

A fixed contact can arise when there is no freedom to slide along an edge because a reflex contact 
fixes a coordinate. For example, in Fig. 3(a), the reflex contact of the determining set fixes the 
z-coordinate of the edge contact, which completely determines the location of the edge contact. If an 
edge contact has an adjacent side which has either a reflex or fixed contact, then the edge contact 
must also be a fixed contact. 

Two sliding edge contacts are dependent if the position of one determines the position of the other; 
otherwise they are independent. An independent sliding contact requires that the two adjacent sides 
of the rectangle do not have any contact with P (see Fig. 3(b)). A sliding contact adjacent to another 
sliding contact is dependent, because the two contacts must share a coordinate (see Fig. 3(c)). 

2.3. Maximization problems 

Here we examine maximization problems associated with certain determining sets of contacts. 
Finding the LR associated with a determining set of contacts requires solving a maximization problem 
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Fig. 4. 1-parameter problems with two and three dependent sliding contacts. 

if the set contains a sliding contact. For a given set of contacts, the number of degrees of freedom is 
the number of undetermined parameters of the rectangle. Degrees of freedom within a determining set 
can arise only from sliding contacts because any other degree of freedom would result in a rectangle 
of infinite area, and therefore the contacts would not form a determining set. It follows that if a 
determining set consists of only reflex or fixed edge contacts, no maximization is required. For each 
independent sliding contact in the set, we can parameterize the associated edge. The maximization 
problems can then be classified based on the number of parameters. 

2.3.1. I-parameter problems 
The set of 1-parameter maximization problems can be further subdivided according to the number 

of dependent sliding contacts. 

The basic 1-parameter problem. The simplest I-parameter problem involves no dependent sliding 
contacts, just a single independent one. This is the basic I-parameter problem, and it arises when 
one comer  of the LR has a sliding contact and the diagonally opposite comer is fixed. The basic 
1-parameter problem can be solved by parameterizing the edge associated with the sliding contact and 
maximizing a quadratic in one variable. This can be solved in O(1) time. 

Two dependent sliding contacts. If there are exactly two dependent sliding contacts in a determining 
set, then these contacts are at the endpoints of one edge of the rectangle, and there is a reflex contact 
with the opposite edge of the rectangle. W.l.o.g. these are the top and bottom edges with y-coordinates 
y and y~, as shown in Fig. 4(a). To find the LR, we parameterize edge ~ by t, yielding a quadratic 
in t to maximize (see [12] for details). 

Three dependent sliding contacts. The case of three dependent sliding contacts is depicted in Fig. 4(b). 
It is dealt with in a manner similar to the case of two dependent sliding contacts. See [12] for details. 

2.3.2. The 2-parameter problem 
There is only one type of 2-parameter problem. It has two independent sliding contacts. The fol- 

lowing lemma allows us to reduce a 2-parameter problem to a set of I-parameter problems. 

L e m m a  2.1. Let et and e2 be non-intersecting line segments. Consider the set of  empty axis-parallel 
rectangles which have diagonally opposite corners on el and e2. There is a largest area rectangle in 
this set with at least one corner at an endpoint of  el or e2. 
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Fig. 5. The determining sets of contacts for the LR. 

Proof. Parameterize the positions of the comers of the rectangle on el and e2. The area of the rectangle 
is a quadratic function of the two parameters. It is easily shown that the graph of the quadratic over 
the patch [0, 1] × [0, 1] is a saddle surface, and therefore the maximum is achieved along the boundary 
of the patch. The boundary corresponds to the subset of rectangles which have at least one comer at 
an endpoint of either e] or e2. [] 

Having established that there exists an LR with a comer at a vertex in this case, we can find it 
by considering, in turn, each of the four endpoints of el and e2, solving the associated I-parameter 
problems, and then comparing the four resulting 1-parameter LR areas. 

2.4. Characterization theorem 

To characterize the LR, we examine the possible determining sets of contacts. By enumerating the 
reflex contacts between the LR and P,  we derive the set of five cases shown in Fig. 5. 

Theorem 2.2. The determining set o f  the LR of a general polygon P conforms (up to symmetry) to 
one of  the five cases in Fig. 5. 

Proof. The proof is a straightforward examination of cases. See [12] for details. [] 

Corollary 2.3. Given a determining set C for  an LR of  a general polygon, it follows that 2 ~< [C[ ~< 4. 

Based on the above characterization, we can find the LR in a general polygon by finding the LR 
under the constraints of each of the five cases and selecting the largest one. It is easy to show that, 
for each determining set Of contacts in Fig. 5, the LR can be found in constant time. A naive LR 
algorithm can use this result and find the LR in each case for all possible determining sets for P .  
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These can be identified using an algorithm with up to four nested loops, one for each element of the 
determining set. For each LR candidate, we can check if it is empty (i.e., contains no point from the 
boundary of P in its interior) in O(n) time. We conclude with the following theorem. 

Theorem 2.4. The LR of  an n-vertex general polygon can be found in O(n 5) time. 

In the remainder of the paper we show how to use the LR characterization combined with fast matrix 
searching to develop a more sophisticated approach to this problem which yields an O(n log 2 n) time 
algorithm. 

3. A general framework for the 2-contact case 

We compute the LR for a general polygon with holes using divide-and-conquer. The divide-and- 
conquer algorithm must find the LR in a polygon P, which is a subset of the general polygon, and 
which is of the following type: the boundary of P consists of two y-monotone chains V and E on 
opposite sides of a vertical line. Recall from Section 1.1 that we call this a vertically separated, 
horizontally convex polygon (see Fig. 2). By Corollary 2.3, the algorithm must consider the 2-, 3- and 
4-contact cases in order to find the LR in P.  Of these, the 2-contact case dominates the running time. 
This section gives a framework for creating algorithms for the 2-contact case for classes of polygons 
with y-monotone chains (including the class of vertically separated, horizontally convex polygons). We 
call this the 2-contact framework. Section 4 applies the 2-contact framework to create a 2-contact LR 
algorithm for vertically separated, horizontally convex polygons and then gives the divide-and-conquer 
LR algorithm for general polygons. In [12] we apply the 2-contact framework to create 2-contact LR 
algorithms for other types of polygons and then give LR algorithms for these types. For all of these 
polygon types, the 2-contact framework yields an algorithm which has the same order running time 
as the fastest LR algorithm for the orthogonal version of that type. 

The 2-contact case for polygons with y-monotone chains V and E involves finding the largest 
rectangle which is inside P and which has one comer on V and the diagonally opposite comer on E. 
By Lemma 2.1, one of the comers of the largest 2-contact rectangle is at a vertex of either V or E. 
Furthermore, there are four choices for which comer of the rectangle has this comer-vertex contact. 
We refer to each of eight possibilities as a Largest Comer Rectangle (LCR) problem. In what follows, 
we treat only the LCR problem for which the lower-left comer of the rectangle is at a vertex of V 
and the upper-right comer is on an edge of E. We call such a rectangle a vertex-edge rectangle for 
V and E. This definition of LCR is analogous to Chazelle's definition of the LECR. 

In Section 1.1, we mentioned that Chazelle et al. use a divide-and-conquer strategy to solve the 
LER (Largest Empty Rectangle) problem for a set of points. For their algorithm, the most difficult 
subcase is the LECR (Largest Empty Comer Rectangle) problem: given a set S of points and given 
two subsets Sleft and Snght of S, find the largest rectangle containing no point of S in its interior 
which has lower-left comer in Sleft and upper-right comer in Snght. Ideally, we would like to solve 
the LCR problem for P,  V and E in the following manner. Set S = vertices(P), Sle f t  = vertices(V) 
and Sr igh t  = vertices(E). Then find the LECR of S, Sleet and Sright- Unfortunately, there are two ways 
in which the LECR can fail to be the LCR. First, some edge of P might intersect the interior of the 
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LECR. Second, the actual LCR might have its upper-right comer in the middle of an edge of E,  not 
at a vertex. 

Fortunately, for a variety of polygon types, it is possible to reduce the problem of computing the 
LCR to that of computing the LECR. The reduction involves several steps, and these steps constitute 
our 2-contact framework for solving 2-contact LR problems. Section 3.1 gives a high level description 
of the 2-contact framework, and Sections 3.2 through 3.4 give specific details. 

3.1. High level description of the 2-contact framework 

This section gives a high level description of the 2-contact framework. The "user" of the framework 
must provide a linear-time transformation of P,  V and E into P~, V ~ and E ~ which satisfies certain 
properties. The framework specifies the properties (which amount to the notion of creating "partially 
orthogonar' P~, W and Et). The "user" must also provide an LECR algorithm with certain properties 
that the framework also specifies. The framework shows how to create an algorithm for the LCR R ~ 
of P~, W and E ~. Because of the properties, R' is at least as large as the LCR of P,  V and E, and 
RtC_ P.  

Notice that the framework does not necessarily create an algorithm for the LCR of P,  V and E. The 
rectangle R ~ is an LCR of P' ,  V ~ and E',  but it might be a 3-contact or 4-contact rectangle inside P.  
Nevertheless, an algorithm for R' is sufficient. Recall that the overall goal is to compute the LR of P.  
When the LR algorithm "checks" the 2-contact case, it is acceptable for the LCR algorithm to find a 
rectangle inside P that is larger than the largest 2-contact rectangle. 

Thus, the framework takes a transformation and an LECR algorithm as "input" and creates an LCR 
algorithm as "output". To do this, the framework defines a second transformation that consists of 
adding a new vertex at the midpoint of every edge of E'.  This transforms P '  into P"  and E '  into 
E".  The framework also defines a measure r / for the size of comer rectangles which have diagonally 
opposite comers in vertices(W) and vertices( E"). The framework modifies the user-supplied LECR 
algorithm by substituting a call to ~/ whenever the LECR algorithm computes the area of a comer 
rectangle. 

Here, in broad detail, is the LCR algorithm that the framework creates. The algorithm first transforms 
P,  V and E, into polygon P '  and chains V' and E '  of P' using the transformation provided by 
the "user". Next, it applies the second transformation, yielding P"  and E". It calls the modified 
LECR algorithm to compute the rectangle R" which maximizes rl over all rectangles with one comer 
in vertices(V'), the diagonally opposite comer in vertices(E"), and which contains no element of 
vertices(P") in its interior. It applies a constant-time transformation to convert R" into R', the LCR 
of P', V'  and E'.  

The framework deals with both of the ways in which the output R" of the LECR algorithm could 
fail to solve the LCR problem: it might not be inside P and it might not have the largest area. First, 
the properties which the user-supplied transformation of P to P '  must satisfy guarantee that R" is 
inside P '  and P.  Second, R" might not have the correct area, but r/(R") is equal to the area of the 
LCR R' of P' ,  V' and E',  and R" can be transformed into R'. 

Section 3.2 defines the three properties that P~, V t and E ~ must have in order to apply the 2- 
contact framework. It defines 77, and proves that the LECR R ~t for the vertices of Pt~, W, E t~, and 
the measure r 1 can be transformed into the LCR R ~ of Pt, V t and E ~ which, in turn, is inside P and 
is at least as large as the LCR of P,  V and E. Section 3.3 considers the question of transforming an 



K. Daniels et al./ Computational Geometry 7 (1997) 125-148 135 

LECR algorithm into an LECR algorithm for measure 77 by substituting the ~7 function for the area 
function in the implementation of the LECR algorithm. This section defines a property called total 
monotonicity and proves that, if both V and E are y-monotone, then both the area function and the r/ 
function are totally monotone. It then observes that if the proof of correctness of the LECR algorithm 
only depends on the total monotonicity of the area function, then the proof will still work if ~7 is 
substituted for area. This "metatheory" is a general scheme for transforming algorithms and proofs. 
However, the only way to be really sure that the proof "only depends" on total monotonicity is to 
substitute ~7 for area and recheck the proof. Section 3.4 observes that if the number of vertices of 19~, 
V ~ and E ~ are linear in the number of vertices in 19, then the algorithm for the LCR of 19~, V ~ and E ~ 
has the same order running time as the corresponding LECR algorithm. 

3.2. Properties and the LR measure 

This section defines three properties of P~, W and E ~ with respect to P ,  V and E. It also defines 
a size measure ~ for rectangles with opposite comers at vertices of W and E".  Recall that E"  has 
vertices at the midpoints of edges of E ~. We call these added vertices special vertices. For a rectangle 
whose comer is at a vertex of E ~, r/ is the area function, but for a rectangle whose comer is at a 
special vertex, ~7 has a different value defined below. We prove that the LECR R" for the vertices of 
U ,  W and E"  has the property that r/(R") is greater than or equal to the area of the LCR of 19, V 
and E. We also show how to generate a rectangle R'  inside P with this area. 

The following are the three properties that U ,  V ~ and E ~ must satisfy with respect to P,  V and E. 

Proper ty  I. Polygonal regions P and P'  satisfy P'  C_ P and each vertex-edge rectangle for  19, V 
and E is a vertex-edge rectangle for  P', V ~ and E'. (Even if the upper-right corner of  the rectangle 
is at a vertex of  E, we still consider it to be a vertex-edge rectangle.) 

Proper ty  II. For every vertex v E V t and every edge e E E~: if  any point q in the interior of  e is 
rectangularly visible 12 from v inside P~, then the entire edge e is rectangularly visible from v. 

Proper ty  III. I f  vertex v E V '  and a point q E E'  are rectangularly visible with respect to vertices(pt), 
then v and q are rectangularly visible with respect to 19~. 

Adding a "special" vertex at the midpoint of every edge of E t does not alter the satisfaction of 
Properties I-III. Therefore P~, W and E"  also satisfy Properties I-III. We introduce a new measure ~7 
on comer rectangles of V ~ and E". For rectangles which have a comer at a special vertex, this measure 
differs from the area function. 

Definition 3.1 (LR measure). The LR measure ~7 of rectangle rect(vw), for vertices v E W and w E 
E",  is defined as follows. If w is not a special vertex, it is area(rect(vw)). If w is a special vertex, 
r/(rect(vw)) is the area of the LR for vertex v and the edge e E E ~ containing w. 

For a given v and e, the LR can clearly be computed in constant time (see Section 2.3). 

12 Two points p and q are rectangularly visible [27] inside polygonal region P if rect(pq) C_ P, where rect(pq) is defined 
to be the axis-parallel rectangle with diagonal pq. 
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Lemma 3.1. Let polygon P'  and y-monotone chains V ~ and E'  satisfy Property I with respect to P, 
V and E. Then the LCR for  P', V I and E I lies inside P, and it is at least as large as the LCR for  P, 
V and E. 

Proof. Let R be the LCR for P,  V and E, and let R I be the LCR for P', V '  and E'. By Property I, 
every vertex-edge rectangle for P,  V and E is a vertex-edge rectangle for U ,  W and E ~. Therefore 
area(R') ~> area(R). Since P '  C_ P,  R'  C_ P.  [] 

L e m m a  3.2. Let polygon P~ and y-monotone chains V I and E ~ satisfy Properties H and III. Let E"  
and rl be as defined above. Then the LECR for  vertices(P'), vertices(V'), vertices(E") and measure 
can be transformed in constant time into an LCR for P~, V ~ and E ~. 

Proof. Let R'  be a LCR for P ' ,  W and E ~, and let R" be the LECR for vertices(P~), vertices(W), 
vertices(E") and measure r/. 

We first prove the following claim: z/(R") = area(R~). 
r/(R") >/area(R~): Let vq be the diagonal of R ~, where q lies on edge e of E ~. If q is an endpoint 

of e, then area(R') = r/(R t) by the definition of 7/. Also, rl(R" ) >>, rl(R ~) because R" is the LECR 
under the measure ~/. Thus, r/(R") ~> area(R1). If q is not an endpoint of e, let w be the special vertex 
of e. By Property II, since v can see q, v can see w. Since r/(rect(vw)) is equal to the area of the 
largest vertex-edge rectangle for v and e, r/(rect(vw)) ~> area(R~). Again, since R" is the LECR, 
r/(R") /> r/(rect(vw)), and thus ~/(R") /> area(R'). 

area(R ~) >~ ~/(R"): It suffices to show that, given R", we can construct rect(vq), where 

area(rect(vq)) = r/(R"), 

where v is a vertex of V', and where q lies on an edge of E I. Let vw be the diagonal of R". If w 
is not special, then let q = w. If w is special, then, by Property II, since v can see w, v can see all 
of edge e containing w, and thus v can see q where vq is the diagonal of the LR for v and e. Thus, 
area(rect(vq)) = r/(R"). Finally, we observe that area(R ~) /> area(rect(vq)) since R'  is the LCR and 
thus is at least as large as any other vertex-edge rectangle. By transitivity, area(R t)/> r/(R"). Putting 
this together with the inequality from the previous paragraph shows that area(R ~) = r/(R"), which 
establishes the claim. 

The last paragraph of the proof of the claim implies that we can construct a vertex-edge rectangle 
rect(vq) in constant time such that area(rect(vq)) = r/(R"). The claim itself establishes r/(R") = 
area(R'), and therefore area(rect(vq)) = area(R'). This means that rect(vq) is either the LCR of P ' ,  
W and E ~ or at least an LCR. Thus, we can construct R ~ from R" in constant time. [] 

3.3. Total monotonicity of  the LR measure 

Lemmas 3.1 and 3.2 reduce the LCR problem to an LECR problem with the notion of "size" given in 
Definition 3.1. An LECR algorithm clearly depends on the notion of "size": the algorithm of Aggarwal 
and Suri for largest perimeter is very different from their algorithm for largest area [2,3]. Furthermore, 
our notion of size does not possess the property required for the class of inclusion problems defined 
in Section 1: 

VQ, O' e Q, O' c O n(Q') n(Q). 
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Here we assume Q is the set of all comer rectangles with lower-left comer in Sleft = vertices(W) and 
upper-right comer in Sright = vertices(E"). However, r /does possess this property if Q is the set of 
all empty comer rectangles with respect to S = vertices(P'). 

Fortunately, for polygons with y-monotone chains which we consider here and in [12], almost any 
known algorithm for the LECR can be used to compute the LECR by merely substituting size for area 
in the algorithm. 

Suppose we number the vertices of V' by decreasing y-coordinate. Similarly, we number the vertices 
of E". It is standard to define an area matrix 13 M whose entry mij contains the size of the rectangle 
with lower-left comer at vertex vi E vertices(W) and upper-right comer at vertex wj E vertices(E"). 
The LECR algorithms we use here and in [12] only require that M satisfies a certain monotonicity 
property. Of course, some entries in the area matrix are invalid because vi and wj are not rectangularly 
visible. However, the only property which the algorithms really depend on is the total monotonicity 
property for legal 14 2 x 2 minors of the matrix. We define this property and show that M defined 
using the LR measure of Definition 3.1 satisfies it. 

Definit ion 3.2 [1]. M is totally monotone 15 if, for every i < i' and j < j~ corresponding to a legal 
2 x 2 minor, mi,j, > mi,j implies raij, > mij.  

Lemma 3.3. I f  an increasing index in M corresponds to decreasing y-coordinates of the associated 
vertices, then M defined by the LR measure is totally monotone. 

Proof. It suffices to assume that wj E vertices(E") and wj, E vertices(E") are special vertices, since 
we can consider an ordinary vertex to represent an edge of zero length with a special vertex equal 
to the ordinary vertex. Let ej and ej, be the edges containing wj and wj,, respectively. Let the LR 
vertices for the pairs (vi, e j ) ,  (vi, , e j ) ,  (vi ,  ej,) and (vi,, ej,) be Pl, P2, P3 and P4,  respectively. Let 
A, B, C, D, E and F be the areas of rect(vipl), rect(viP3), rect(vep2), rect(vi,p4), rect(vip2) and 
rect(vep3), respectively. To show monotonicity, it suffices to show that: B > A ~ D > C. To show 
this we need the intermediate result: B > E ~ F > C. 

B > E ,  

(P3x -- Vix)(P3y -- Viy) > (P2x -- Vix)(P2y -- Viy), 

P3xP3y + v ix(P2y -- P3y) > P2zP2y + Viy(P3x -- P2z) .  

For the next step we need the following: viy >>. Vi,y, P2y >1 P3y, vi, x >/ vix and P3z >~ P2x. The 
y-coordinate inequalities are direct consequences of the y-monotonicity of vertex and edge chains. By 
assumption, we are dealing with a valid 2 x 2 minor of the matrix. Therefore, there are four distinct 
empty rectangles which have a lower left vertex in the set {vi, vi, } and an upper right vertex in the 

13 Size matrix would be the more general term. 
14 A legal 2 × 2 minor contains only entries corresponding to empty rectangles. 
15 In the literature, the term totally monotone refers to a matrix which has the total monotonicity property and no illegal 

entries. Matrices which have the property but have some illegal entries are sometimes referred to as monotone (e.g., monotone- 
single-staircase, monotone-double-staircase). This is confusing, since monotonicity is also presented in the literature as a 
weaker condition than total monotonicity: a matrix for which the column of the row maximum moves to the right as i 
increases is monotone, and it is totally monotone only if all 2 x 2 minors also possess this property. Our terminology 
removes this confusion. 
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set {wj, wj,}. By Properties II and III, there are twelve empty rectangles which have a lower left 
vertex in the set {vi, vi, } and an upper right vertex in the set {P l, w j, P2, P3, w j,, P4} (although they 
are not necessarily distinct since Pl could equal wj, for instance). The two x-coordinate inequalities 
must hold in order that rectangles rect(vip3) and rect(vep2) be empty. 

P3xP3y + Vi'x(P2y -- P3y) > P2zP2y + Vi'y(P3z -- P2x), 

(p3  - w )(p3  - > - - 

F > C .  

The definition of an LR implies that A > / E  and D / >  F.  B > A and A/> E =¢, B > E :=> F > C. 
D > ~ F a n d F > C = ~ D > C .  T h e r e f o r e B > A = ~ D > C .  [] 

Corollary 3.4. I f  V'  and E'  are v-monotone, then M defined by the LR measure is totally monotone. 

Proof. P~ satisfies the condition of Lemma 3.3. D 

3.4. LCR running time 

Based on Lemmas 3.1 and 3.2 and Corollary 3.4, we make the following claim, which is used in 
Section 4 and in [12] to establish running times for solving the 2-contact case in a variety of types of 
polygons. 

Claim 3.5. For an n-vertex polygon P with y-monotone chains V and E, if  the following two condi- 
tions hold, then the LCR can be found in the same asymptotic running time as the LECR algorithm. 
• An O(n) vertex polygon P'  and with y-monotone chains V'  and E'  satisfying Properties I - l l l  can 

be produced from P, V and E in O(n) time. 
• The LECR algorithm for S = vertices(P'), Sleet = vertices(W) and S r i g h t  = vertices(E") depends 

only on the total monotonicity of  the matrix associated with the size measure. 
As stated previously, E" is E p with a special vertex added at the midpoint of  each edge of  E ~. 

In general, we produce P~, V' and E' from P,  V and E by projecting vertices of P and replacing 
some edges of P by inner orthogonal approximations. For this, we assume O(n) preprocessing time to 
construct horizontal and vertical visibility maps for P. Projection and orthogonalization can be done 
in O(n) time and add only a linear number of vertices to P. The LECR algorithms we use here and in 
[12] depend only on the total monotonicity of the area matrix. To obtain the desired running time in 
each case for finding the LCR, it therefore suffices to construct P', V ~ and E ~, show that they satisfy 
Properties I-III, and establish the running time of the appropriate LECR algorithm. 

Implementat ion note. We can avoid the use of special vertices if we accept a more complicated 
definition of the LR measure. For entry mij, let e be the edge whose upper endpoint is wj. If all of e 
is rectangularly visible to vi, zl(rect(viwj)) is the area of the LR whose lower-left comer is at v~ and 
upper-right comer is on e. Otherwise, 77(rect(viwj) ) = area(rect(viwj)). 
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4. LR algorithm for general polygons 

This section develops an O(n log 2 n) time divide-and-conquer algorithm for finding the LR in a 
general polygon with holes. First, the 2-contact framework is applied in Section 4.1 to solve the 
2-contact case for a vertically separated, horizontally convex polygon. This type of polygon arises 
in the merge step of the divide-and-conquer algorithm. Next, we show in Section 4.2 that the LR of 
a vertically separated, horizontally convex polygon (see p. 126 for the definition) can be found in 
O(n log n) time. This O(n log n) algorithm uses the results of Aggarwa| and Suri [2,3] for the LECR 
problem. Finally, Section 4.3 gives the full algorithm for general polygons with holes. 

4.1. LCR of a vertically separated, horizontally convex polygon 

In this section, we apply the 2-contact framework to solve the 2-contact case for a vertically 
separated, horizontally convex polygon. Suppose V is the left chain and E is the right chain. Recall 
that V and E are y-monotone. Section 4.1.1 gives the transformation from P, V and E to P',  W and 
E ' that is required by the framework (Section 3.2), and Section 4.1.2 provides the required LECR 
algorithm. By Claim 3.5, the transformation and the LECR algorithm are all we need to create a LCR 
algorithm for vertically separated, horizontally convex polygons. 

4.1.1. Construction of P', V' and E' 
We produce P' ,  V' and E'  using the following set of projections followed by orthogonalization (see 

Fig. 6). From each vertex in V, project a vertical ray upwards, adding vertices where the rays hit V, 
as shown in Fig. 6(a). For each vertex in V (including new ones) project a horizontal ray rightward, 
as in Fig. 6(b). Add vertices to E where these rays hit. For each vertex of E (including new ones) 
project up, adding new vertices, as in Fig. 6(c). Now, replace each edge of modified V and E which 
has positive slope by its inner orthogonal approximation to produce P',  V' and E'. This process adds 
a linear number of new vertices. The final result is illustrated in Fig. 6(d). 

Proof of Property I. Edges of P which have negative slope are not orthogonalized, so a vertex-edge 
rectangle of P is also a vertex-edge rectangle of pt. We need only show that if it is empty in P it 
is empty in P'.  Suppose vertex-edge rectangle rect(vq) is empty in P, but not empty in P'.  Then 
rect(vq) must contain a vertex c of the orthogonalized upper-left (w.l.o.g.) boundary of P' ,  but it 

(a) upward projection (b) rightward projection (c) upward projection (d) orthogonalization 

I 0 new vertex I 

Fig. 6. P' construction for two chains of a vertically separated, horizontally convex po|ygon. 
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does not intersect edge ab of P,  where acb is the inner orthogonal approximation of ab. Therefore 
az < vz < cx. But this cannot be because v was projected upwards, so there should be a vertex 
between a and b with x-coordinate vz. 

Proof of Property II. Let v be a vertex of W and let q and q~ be two vertices on the same edge e 
of E ' .  We need to show that if rect(vq) is empty, then rect(vq ~) is also. We consider first the case 
in which q is below q~. Assume rect(vq) is empty but rect(vq ~) contains a vertex c of the upper-left 
chain. As we shift q towards q~, the top edge of rect(vq) moves upwards and must hit c before q 
reaches q~. But Cy = ay, where acb is the inner orthogonal approximation of ab, and a was projected 
rightwards onto the edge chain. Therefore q hits a projected vertex before it reaches q~, contradicting 
the assumption that they were on the same edge. Now consider the case in which q is above or at the 
same height as q~. Assume rect(vq) is empty but rect(vq ~) contains a vertex c of the lower-right chain. 
As we shift q towards qt, the right edge of rect(vq) moves rightwards and must hit c before q reaches 
q'. But cz = bz, where acb is the inner orthogonal approximation of ab, and b was projected upward 
to E ~. Therefore q hits a projected vertex before it reaches q~, contradicting the assumption that they 
were on the same edge. 

Proof of Property I lL  The proof of Property I guarantees that rectangle rect(vw) does not intersect 
the inner orthogonal approximation of any positive slope subedge of P.  It remains to show that no 
edge with negative slope can cut across rect(vw). A negative slope edge cannot cross the vertical 
line separating L and R, so it must cross either the upper-right or lower-left comer, contradicting the 
y-monotonicity of one of the chains. 

4.1.2. LECR algorithm 
Aggarwal and Suri have an O(n log 2 n) algorithm for the LER (Largest Empty Rectangle) problem 

for points [2,3]. They use a divide-and-conquer approach which partitions the set S of points into two 
subsets Sleft and Sright about a vertical line, and recursively finds the LER in Sleft and Sright. The merge 
step requires finding the LECR (Largest Empty Comer Rectangle) whose lower-left comer is in Sleft 

and upper-right comer is in Sright. They solve the LECR problem in O(n log n) time by forming an 
area matrix whose legal 2 x 2 minors are monotone and by applying fast searching techniques to this 
matrix. Their proof of this LECR algorithm relies only on the monotonicity property. We reimplement 
this LECR algorithm by substituting our LR measure z~ (see Definition 3.1) instead of the area measure. 
We run this modified algorithm on inputs ~left  = vertices(W) and Sright ---- vertices(E"). 

By Claim 3.5, the transformation of the previous section and the modified LECR algorithm yield an 
O(n log n) time algorithm for finding the LCR in a vertically separated, horizontally convex polygon. 

4.2. LR of  a vertically separated, hor&ontally convex polygon 

Theorem 4.1. The LR in an n-vertex vertically separated, horizontally convex polygon (or hor&ontally 
separated, vertically convex polygon) can be found in O(n log n) time. 

Proof. We treat the vertically separated, horizontally convex polygon P,  w.l.o.g, the 2-contact case 
consists of eight LCR subcases. The results of Section 4.1 show that each LCR problem can be solved 
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Fig. 7. Orthogonally convex polygon at merge step. 

in O(n log n) time. The remaining cases involve either 3 or 4 contacts. We claim these cases can be 
solved by an O(n log n) time divide-and-conquer algorithm 16 

[ , emma 4.2. The 3- and 4-contact LRs for an n-vertex vertically separated, horizontally convex poly- 
gon P can be found in O(n log n) time. 

Proof. We use a divide-and-conquer algorithm which, at each step, partitions the vertex set using a 
horizontal line L into two sets, each of size at most [n/2J + 4. We determine the endpoints of L in 
linear time by examining all the edges of the polygon. We construct the polygon above L and the 
polygon below L in linear time by walking around the boundary of P.  Then we recursively find the 
3- and 4-contact LRs above L and the 3- and 4-contact LRs below L. The merge step requires that 
we find the 3- and 4-contact LRs intersecting L. Let Rz, denote the larger of the two 3- and 4-contact 
LRs intersecting L. Let Q be the largest polygon inside P and containing L that is monotone with 
respect to L (see Fig. 7). 

Lemma 4.3. RL C_ Q. Furthermore, Q is orthogonally convex, can be constructed in O(n) time, and 
has O(n) vertices. 

Proof. Any axis-parallel rectangle R intersecting L must be such that each point p C R is vertically 
visible to L; hence RL E Q. To construct Q we first supplement the vertices of P with the extra points 
obtained from the precomputed vertical visibility map. We then claim that two simple traversals of P 
suffice to construct Q. Let 1 be the left endpoint of L, and r the right endpoint. The first traversal is 
counterclockwise from I to r to construct the bottom portion of Q; the second is clockwise from l to r 
to build the top part. We begin the counterclockwise traversal by following the downward projection 
of I until it hits the boundary of P.  Then we follow the boundary of P unless we encounter either (1) 
a reflex extreme vertex that is supported from the right by a vertical line, (2) a vertex which is the 
bottom endpoint of a vertical visibility line emanating from a reflex extreme vertex that is supported 
from the left by a vertical line, or (3) the a: value of r. In case (1), we follow the visibility line 
downwards to the boundary of P.  In case (2) we follow it upwards to the associated reflex extreme 
vertex. In case (3), we proceed to r, and terminate the traversal. Constmcting the top part of Q is 
similar. 

The visibility map introduces at most one new vertex for each vertex of P,  so Q has O(n) vertices. 
We visit each vertex at most once during each sweep, so the algorithm requires O(n) time. To show 

16 Note that it is also possible to solve the 3- and 4-contact case in O(n) time using a sweep-line algorithm, but that does 
not improve the overall running time. 
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Q is orthogonally convex, let b and t be the lowest and highest points (respectively) on P that are 
visible to L. The counterclockwise sweep builds an xy-monotone path from I to b and from b to r. 
Similarly, the clockwise sweep builds an xy-monotone path from l to t and from t to r. Since the 
result is a polygon consisting of four xy-monotone chains, such that Ix ~< bx ~< rx and lx <~ t~ ~< r~, 
it is orthogonally convex. 

This completes the proof of Lemma 4.3. [] 

The 3- and 4-contact LRs in the orthogonally convex polygon Q can be found in O(n) time using 
a sweep-line algorithm. The algorithm is essentially the same as that used by McKenna et al. [20] to 
obtain the same time bound for orthogonal, orthogonally convex polygons. Details appear in [12]. 

Now we argue that if the LR in P intersects L and is a 3- or 4-contact LR, it is also a 3- or 
4-contact LR in Q. This is because, if a rectangle r has at least three contacts with P,  it has at least 
three contacts in Q. 

The running time of the algorithm therefore satisfies the recurrence T(n) <<, 2T([n/2J  + 4) + O(n), 
which gives an O(n log n) algorithm for finding the 3- and 4-contact LRs. 

This completes the proof of the Lemma 4.2. [] 

This completes the proof of Theorem 4.1. [] 

4.3. LR of a general polygon with holes 

Theorem 4.4. The LR in an n-vertex general polygon can be found in O(n log 2 n) time. 

Before giving the proof, we discuss a difficulty which arises in constructing a partitioning line for 
a divide-and-conquer algorithm for finding the LR in a general polygon. If the polygon did not have 
holes, we could apply a corollary of Chazelle's polygon-cutting theorem [8] to find a single vertical 
line segment within P which partitions the boundary of P into two pieces, each containing less than 
2n/3 vertices. Because we allow holes, we cannot subdivide the boundary of P into two pieces using 
a single vertical line segment; we must partition it using multiple line segments. Let L be a vertical 
line which partitions the vertices of P into two sets, each of size roughly n/2, and suppose L is 
partitioned into k pieces L1, L2 , . . . ,  Lk by the interior of the polygon. We want to split P into left 
and right subpolygons ~left and Pright, recursively find the LR in each subpolygon, and then perform 
a merge step in which we find the LR intersecting Li, for 1 ~< i ~< k. However, in such an approach, 
the fact that the endpoints of Li are not vertices of P means we add 2k vertices each time we recurse. 

McKenna et al. [20] observed that, if P is an orthogonal polygon with holes, one need not add 2k 
new vertices if the following technique is used. Before the start of the divide-and-conquer algorithm, 
preprocess P so that all vertical projections (internal to P)  of vertices of P are vertices. At each step 
of the divide-and-conquer algorithm, construct a trapezoid Qi corresponding to each Li as follows. 
Li intersects two edges of P;  these edges are vertically visible from each other. Because of the 
preprocessing, the left endpoints of these edges can be joined by a vertical line segment li, and their 
right endpoints can be joined by a vertical line segment ri 17. Segments li and ri contain only points 

17 In a degenerate case when vertices of P lie on L~, one can treat this as if Li -- l~, and arbitrarily choose Q~ to be 
the trapezoid to the right of the partitioning line segment L~. It is easy to show that this implies that no more than 1 /2  the 
vertices of P on L end up on the boundary of/:]eft. Therefore, I/:]eftl ~ 3n/4. 
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o pr~eeted ve~ex 

I! Qi 

Fig. 8. Construction of trapezoid Q~. 

which are internal to or on the boundary of P.  Let Qi be the (empty) trapezoid bounded on the left 
by li and on the right by ri (see Fig. 8), and let Q = U Qi. McKenna et al. observe that, if the LR 
does not intersect Li, then it does not contain any point in the interior of Qi. This allows them to 
redefine Pleft and /°fight tO be completely disjoint by removing Q from consideration. Unfortunately, 
their observation about Qi does not hold in the non-orthogonal case. We overcome this in the proof 
below by considering rectangles which cross either li or ri and finding the LR in Qi. 

Proof.  We preprocess P to construct horizontal and vertical visibility maps and to add the internal 
vertical projections of vertices. Our divide-and-conquer algorithm partitions the vertices of P (both 
original and vertical projections) at each step using a vertical line L into two sets, each of size at most 
[n/2]. Suppose that L is partitioned into k pieces L1, L 2 , . . . ,  Lk by the interior of the polygon. For 
1 ~< i ~< k, we define li, ri and Qi as above. As before, let Q = U Qi, and construct subpolygons 
/]eft and Pright of P \ Q to the left and right of L such that they do not share any vertices and each 
has no more than In/2]  vertices. We recursively find the LR in /]eft and Pright. In the merge step, 
for 1 ~< i ~< k, we find the LR in Qi, the LR of P which intersects li, and the LR of P which 
intersects ri. 

To show that this algorithm finds the LR of P,  we argue as follows. If the LR does not intersect 
the interior of Q, then it lies either in/:left or/:)right, SO, at the divide step, we can recursively find the 
LR in Plea and Pright. If the LR intersects the interior of Q, we can find it during the merge step as 
follows. If the LR lies entirely within Q, we can find it by finding the LR in each Qi. If the LR is 
not entirely within Q, it must cross some li or r i. 

We now show that the algorithm requires O(n log 2 n) time. First, we note that an O(n log n) sweep 
algorithm suffices for constructing the visibility maps and projecting the vertices. This need only be 
done once before the start of the divide-and-conquer algorithm, and the maps can be updated in linear 
time at each step. We can determine the endpoints of Li, 1 ~< i ~< k, in linear time by examining all 
the edges of the polygon and using the vertical visibility map. Because we have the visibility maps, 
Pleft and /°fight can  be constructed in O(n) time. Pleft and -/:>fight each have size <~ [n/2q. Since Qi is 
a trapezoid, the LR in Qi can be found in 0(1)  time, so the LR in Q can be found in O(n) time. 
We describe below how to find the LR intersecting li, 1 <~ i <~ k, in a total of O(n log n) time. The 
technique for ri is the same. 

L e m m a  4.5. For an n-vertex polygon P, the LR which intersects li, for 1 <~ i <~ k, can be found in 
a total of  O(n log n) time. 
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Proof. Let Hi be the largest polygon in P which is horizontally visible from li. Let Hi have ni  

vertices. 

Claim 4.6. The LR which intersects li is a subset of Hi. Furthermore, Hi is a vertically separated, 
horizontally convex polygon, and can be constructed in O(ni) time. 

Proof. The proof is similar to the proof of Lemma 4.3. We use the horizontal visibility map and 
two traversals to construct Hi. Hi is a vertically separated, horizontally convex polygon because each 
traversal builds a chain that is monotone with respect to the vertical line li. 

This establishes Claim 4.6. [] 

k o(n). Claim 4.7. Ei=l ni  E 

Proof. The horizontal visibility map on P partitions the interior of P into a set of trapezoids T. Let 
T/ c_ T be the set of trapezoids that contains a point in the interior of li; hence O(ni) E O(IT/I). 
Consider i, j such that i # j and lj is to the right of li (w.l.o.g.). The only points which the interior of 
li sees to its right (and to the left of L) are points in Qi. Since the interior of Qi is empty, this means 
that no point in the interior of lj is horizontally visible from a point in the interior of li. Therefore, 
li and lj cannot share a trapezoid. Thus, each trapezoid in T is associated with at most one i, and 

therefore )-'~-~=10(IT/I) E O(ITI) E O(n). 
This establishes Claim 4.7. [] 

By Theorem 4.1, we can find the LR in Hi in O(ni log ni) time. Combining this result with Claim 4.7 
implies that we can find the LR which intersects li, for 1 ~< i ~< k, in a total of O(n log n) time, which 
establishes Lemma 4.5. [] 

Lemma 4.5 implies that the merge step can be performed in O(nlogn)  time. This yields the 
following recurrence: T(n)  <<, 2T( In~2] ) + O(n log n), which gives O(n log 2 n) time for the combined 
algorithm. 

This completes the proof of Theorem 4.4. [] 

Note. In a degenerate case when vertices of P lie on Li (see footnote on p. 142), the recurrence 
becomes T(n)  <<, T (n l )  + T(n2) + O(nlogn) ,  where nl + n2 = n and nl ,n2 <~ [3n/41, which still 
has the solution O(n log 2 n). 

This completes the presentation of the LR algorithm for general non-orthogonal polygons with holes. 
The reader is referred to [12] for LR algorithms for other types of polygons. 

5. Lower bounds 

Here we establish lower bounds of time in f2(n log n) for finding the LR in both self-intersecting 
polygons and general polygons with holes. The latter result gives us both a lower bound of f2(n log n) 
and an upper bound of O(n log 2 n) for general polygons with holes. 
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Fig. 9. Orthogonal self-intersecting polygon constructed for input = 10, 5, 30, 25. 

These lower bounds contrast with the O(n) time result achievable for the corresponding enclosure 
problems 18 

5.1. Self-intersecting polygons 

We prove a lower bound of time in f~(n log n) for finding the LR in a self-intersecting polygon. 

Theorem 5.1. Finding the LR in an n-vertex self-intersecting polygon requires time in ~ ( n  log n) in 
both the linear and algebraic decision tree models. 

Proof. We reduce the MAX-GAP problem 19 [4] to the LR problem for self-intersecting orthogonal 
polygons. Consider an instance of MAX-GAP: given a set of n real numbers Xl, x 2 , . . . ,  xn, we must 
find the maximum difference between two consecutive numbers in the sorted list. We construct from 
this set, in linear time, a self-intersecting orthogonal polygon of unit height as follows: each xi in 
the sequence corresponds to a rectangle ri = [(Xl, 0), (Xl, 1), (xi, 1), (xi, 0)]. We start the construction 
from (xt, 0), complete the degenerate rectangle rl ,  then construct r 2 , . . . ,  r~ (as shown in Fig. 9). This 
construction results in a self-intersecting polygon, with the property that the area of the LR included 
in it is the solution to the corresponding MAX-GAP problem, thus proving the theorem. [] 

5.2. General polygons with holes 

McKenna et al. [20] have given a lower bound of time in ~ ( n  log n) for finding the LR in a general 
polygon with degenerate (zero area) holes. Aggarwal and Suri [2] have given the same lower bound 
for LER. Using symbolic perturbation [14,31], both of these can be extended to lower bounds on the 
computation of the LR in a general polygon. For the degenerate case, McKenna et al. use a reduction 
from the even distribution problem: given a set of n real numbers Xl ,X2,X3, . . .  , x  n (not sorted), 
determine if there exist adjacent xi and xj in the sorted list such that xj - xi > 1. Their reduction 
involves the construction of a long horizontal rectangle with vertical "slits" at each xi. These slits 
can be thought of as degenerate rectangular holes. Given a slit (xi, Yb)(Xi, Yt) we can "expand" it to 
a rectangle with diagonal (xi, yb)(Xi + e, Yt) where e > 0. Of course, if we choose e greater than the 
value of the minimum gap between points (possibly another ~ ( n  log n) problem), then neighboring 
slits will overlap and the polygon will be self-intersecting; in effect, we have to know the minimum 
gap in order to compute the maximum gap. 

Is It is interesting to note that the dual problems of largest empty circle and smallest enclosing circle for a set of points 
also have different lower bounds. The largest empty circle can be constructed in O(n log n)  time, and the smallest enclosing 
circle can be found in O(n)  time [28]. 

19 In both the linear and algebraic decision tree models (if not enhanced to include floor and ceiling functions), MAX-GAP 
has a lower bound of f~(n log n). 
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Symbolic perturbation rescues us from this chicken and egg problem by allowing e to remain 
unevaluated until after we have run the LR algorithm. Given an algorithm for computing the LR of a 
polygon with non-degenerate holes, we modify the way the algorithm evaluates and tests the sign of 
arithmetic expressions. Since some of the inputs involve e, the arithmetic expressions of the modified 
algorithm are polynomials in e. For these, the modified algorithm computes the sign by taking the 
sign of the first (lowest degree in e), nonzero coefficient. We observe that: 
• there exists a value of e such that the signs computed by the modified algorithm equal the signs 

computed by the unmodified algorithm on this value of e (this is the basic theory of symbolic 
perturbation); 

• the running time of the modified algorithm is a constant times the running time of the unmodified 
algorithm on that value of e. 

Hence, any algorithm for the LR in a general polygon can be used to test even distribution via a linear 
time reduction. Hence the construction of the LR in a general polygon has an f2(n log n) lower bound. 
We could have also reduced the LER problem to the LR problem by replacing every point in the LER 
instance by a square of size e. 

6. Appfications 

When a polygon is nearly rectangular, the LR provides a good inner approximation. Many LR 
applications have surfaced in our automatic marker-making project for the apparel industry. We briefly 
describe two of them in this section. The goal of our project is to automate the task of laying out 
polygonal apparel pattern pieces on a rectangular sheet of cloth of fixed width and minimal length 
[22,23]. In the apparel industry, this layout is called a marker. 

Pants markers consist of large panel pieces and smaller trim pieces. We have a heuristic method 
that does a good job placing the larger panel pieces [23]. We use LRs during the trim placement stage. 
Fig. 10 shows a rectangular marker with the large panels already placed. The smaller trim pieces to the 
left of the marker rectangle must be placed in the gaps of unused material between adjacent panels. 
We compute the LR of each trim piece and use that inner approximation as part of our algorithm that 
decomposes the gaps into smaller, more manageable regions [11]. The decomposition algorithm is part 
of software which we have licensed to a CAD finn in the apparel industry. We have also considered 
computing the LR of each gap region and then packing the nearly rectangular trim pieces into the LRs 
using techniques from the rectangle packing domain. We do not currently use this strategy in our trim 
placement heuristic. 

LL ...... • ~::'~:':':':'~':'~!:~1 . . . . . .  " ~ ~ : ~ ! ! ~ :  ......................... ~'~'::'" ':'~ .f".'~'~" ':': .~.~.'~: i'~'~i i'~:,'~?::~;:.. 

j i?~!i :i.~!iii:~i.~:.. 

Fig. 10. Pants marker with placed panels and unplaced trim. 
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7. Conclusion 

We have presented the first algorithmic result for finding the LR in non-orthogonal general poly- 
gons with holes: an O(nlog 2 n) time algorithm. We have also established a lower bound of time 
in f~(nlogn) for this type of polygon. In this paper and in [12] we have shown, for a variety of 
non-orthogonal polygons, that the LR can be found in the same asymptotic running time as the best 
algorithms for their orthogonal counterparts. 

Pursuing more efficient algorithms for finding the exact LR is certainly one direction for future 
work. Another direction of practical importance is to find a fast approximate LR algorithm. Such an 
algorithm would be very helpful in our applications. 

This paper has described a general mechanism for developing LR algorithms for non-orthogonal 
polygons. The mechanism has three key components: (1) the idea of "determining sets" of contacts, 
used to characterize the LR for a general polygon with holes, (2) identifying the determining set of 
contacts corresponding to the one subproblem which dominates the running time for finding LRs in a 
variety of types of polygons, and (3) a general framework for solving the dominant subproblem using 
a new notion of rectangle size. The framework involves creating a partially orthogonal polygon to 
which we apply a known algorithm for solving the LECR problem. To develop an LR algorithm, we 
solve the key subproblem using our framework and then solve the remaining subproblems. There may 
be other classes of polygons, in addition to the ones we examine here and in [12], that are amenable 
to this general method. 

It is interesting that in order to solve the LR problem we need a notion of rectangle size which 
does not possess the following important property held by both area and perimeter for rectangles: VQ, 
Q' E Q, Q' c_ Q =~ ~I(Q') <~ ~I(Q). We think it might be useful in other instances to consider such 
nonstandard size measures. 
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