
G u i d e t o c r e a t i n g c u s t o m G r a s s h o p p e r 0 . 6 . X c o m p o n e n t s

By Ben Sitler

 Introduction

First of all, if you are looking to write your own Grasshopper components you are likely 1) an experienced
Grasshopper user and 2) quickly outgrowing the VB scripting components. You are looking for more
functionality and a more permanent fix than transient scripted components in your .ghx files. Fortunately for
you, writing our own custom grasshopper components can be but a relatively simple and pain free next step
from scripting if you follow these instructions.

Grasshopper is a DotNET plugin for Rhino, and any addition to Grasshopper must be written with VB.NET or
C#.NET (Actually any DotNET language would work and even C++ or CLI would be technically feasible, but
these alternative routes would be a BIG headache). David uses both C#.NET and VB.NET, and I will show you
how to view existing components in either language to learn the syntax and methods of implementation. It is
only a matter of preference between the two as to which one you use. To get started you are going to need to
obtain some software:

 Visual Studio (express editions free at http://msdn.microsoft.com/en-us/vstudio/default.aspx,
VS Standard 2005 can be bought on Amazon or a similar place for less than $100)

 Rhino DotNET SDK (http://download.rhino3d.com/Rhino/3.0/DotNetSDK/)
 Redgate’s .NET Reflector (free at http://www.red-gate.com/products/reflector/index.htm)
 Rhino and Grasshopper, obviously

Note: This manual is based on VB.NET using Visual Studio 2005 Standard Edition (what I use!), but it is easy
to apply these steps to VS 2008 or 2010, Express Editions and C#.NET.

Once everything is downloaded and installed follow the instructions in the Rhino DotNET SDK “readme” file.

An important note is that when Rhino 5.0 ships, NONE OF YOUR COMPONENTS WILL BE
COMPATIBILE. The new version will ship with a new DotNET SDK called RhinoCommon. While there
does not seem to be a precise date, realize that Grasshopper 0.7.X (built on the new SDK) could become
available as soon as summer 2010. Therefore, any custom component development that you do in the next few
months should only be to get your feet wet, not to program any serious plugins.

Alas, now that we have washed our hands of the upcoming tragedy we can refocus on learning the Visual
Studio environment and creating custom Grasshopper components.

G u i d e t o c r e a t i n g c u s t o m G r a s s h o p p e r 0 . 6 . X c o m p o n e n t s P a g e | 2

Setting up a class library

Open up Visual Studio and create a New Project of type Class Library (Chose a project type of VB or C# at this
stage depending on your preference…you cannot change this latter). Enter in the project name.

Next you need to create the references. Click Toolbar: Project>Add Reference, and then add each of the
following, one at a time (set CopyLocal = False in reference properties window...see above image):

 Rhino_DotNET.dll (Browse>found in the Rhino System folder, next to Rhino.exe)

 Grasshopper.dll (Browse>found in the Grasshopper plug‐in folder)

 GH_IO.dll (Browse>found next to Grasshopper.dll)

 System.Drawing (.NET)

 System.Windows.Forms (.NET)

If you have VS Pro or Standard edition, go to Toolbar: Project>Name Properties>Compile>Build Events and in
the Post Build Event Command Line box enter the following code>OK

rename "$(Targetpath)" "Name.gha"

If you have VS Express you will have rename the plugin .dll extension to .gha after each build and move the
program manually to C:\Program Files\Rhinoceros 4.0\Plug-ins\Grasshopper\Components

(the .dll can be found in Documents>Visual Studio>Projects>Name>Bin>Release>Name.dll)

Creating your first Class (Grasshopper buttons)

In the tradition of programming, our first component will be “Hello World.” Copy and paste the following VB
or C# code into the Visual Studio editor. Your program will look like this:

G u i d e t o c r e a t i n g c u s t o m G r a s s h o p p e r 0 . 6 . X c o m p o n e n t s P a g e | 3

HelloWorld in Visual Basic.NET

Imports Grasshopper.Kernel
Imports Grasshopper.Kernel.Types
Imports RMA.OpenNURBS
Public Class HelloWorldVB
 Inherits Grasshopper.Kernel.GH_Component
 ' Methods
 Public Sub New()
 MyBase.New(“HelloWorld", "HW", "Writes Hello World", "Extra", "HelloWorld")
 End Sub
‘ This is "ButtonName", "Abbreviation", "Description", "TabName", "SubTabName"
‘ The TabName can be either any of the existing ribbon tab names or a new one of your
‘ creation. The same goes for the SubTabName and if it matches an existing TabName,
‘ your button will simply be added to this tab.
 Protected Overrides Sub RegisterInputParams(ByVal pManager As GH_InputParamManager)
 pManager.Register_Boolean("Execute", "E", "Execute?", False, False)
 End Sub
‘ InputParams can be anything from integers, on3dpoint, booleans or any other valid
‘ parameter listed by the tooltip that appears when pManager. is typed. If your input
‘ is not a list, make sure the last boolean is set to False
 Protected Overrides Sub RegisterOutputParams(ByVal pManager As GH_OutputParamManager)
 pManager.Register_StringParam("String", "S", "HelloWorld String")
 End Sub
 Protected Overrides Sub SolveInstance(ByVal Da As IGH_DataAccess)
 Dim Execute As Boolean = False
 If (Da.GetData(Of GH_Boolean)(0, Execute)) Then
 If Execute Then

 Da.SetData(0, "Hello World")
 End If
 End If

 End Sub
‘ Your InputParams are accessed using DA.GetData(Of type)(index, variable stored to) from
‘ indexes 0 to nInputs-1 and you outputs are assigned using iData.SetData(index,value)
‘ with indexes 0 to nOutputs-1. It is good practice to use an If Statement to prevent
‘ acting with empty variables.
 ' Properties
 Public Overrides ReadOnly Property ComponentGuid() As Guid
 Get
 Return New Guid("{3cc52f82-c4bb-4520-85b4-34f3b826658b}")
 End Get
 End Property
‘ You must create your own unique Guid, see below
 Protected Overrides ReadOnly Property Internal_Icon_24x24() As System.Drawing.Bitmap
 Get
 Return My.Resources.HelloWorld
 End Get
 End Property
‘ You must create your own image first before you can use the resource.
End Class

HelloWorld in C#.NET

using System; using System.Collections.Generic; using System.Text; using System.Drawing;
using Grasshopper.Kernel; using Grasshopper.Kernel.Types; using RMA.OpenNURBS;
namespace HelloWorldC {
 public class HelloWorld : GH_Component {
 // Methods
 public HelloWorld()
 : base("HelloWorld", "HW", "Writes Hello World", "Extra", "HelloWorld"){
 }

G u i d e t o c r e a t i n g c u s t o m G r a s s h o p p e r 0 . 6 . X c o m p o n e n t s P a g e | 4

 protected override void RegisterInputParams(GH_Component.GH_InputParamManager
pManager){
 pManager.Register_BooleanParam("Execute", "E", "Execute?", false, false);
 }
 protected override void RegisterOutputParams(GH_Component.GH_OutputParamManager
pManager){
 pManager.Register_StringParam("HelloWorld", "HW", "HelloWorld String");
 }
 protected override void SolveInstance(IGH_DataAccess DA){
 GH_Boolean Execute = null;
 if (DA.GetData<GH_Boolean>(0, out Execute)){
 if (Execute){
 DA.SetData(0, "Hello World");
 }
 }
 }
 // Properties
 public override Guid ComponentGuid {
 get {
 return new Guid("{c68f4c6b-93d7-4e8d-bf83-1bdcad2ee37c}");
 }
 }
 protected override Bitmap Internal_Icon_24x24 {
 get {
 return HelloWorldC.Properties.Resources.HelloWorld;
 }
 }
 }
}

Note: To make this program work, you need to create a few more things.

Guid stands for Globally Unique Identifier and is a pseudo unique ID number for your program. You can
generate these at http://www.guidgenerator.com/online-guid-generator.aspx and you need a new GUID for each
class that you create.

To create your button image you have essentially two options: you can make a quickie 24x24 pixel bitmap
using the built in editor, or you can import an image created in a stand alone editor like Photoshop or XaraX.
The key to a good quality image is a transparent background (.PNG are great for this purpose) and anti aliased
object borders (to avoid pixilation). Valid image types are .PGN, .BMP, .GIF, .JPG, .TIFF.

VS Editor: Toolbar: Project>Name Properties>Resources>Add Resource>New Image>BMP>Enter Name

Change the image size to 24x24 pixels and draw away! Then go back and Return My.Resources.ImageName
to the name of your image.

External Editor: Same except Add Resource>Add Existing File>locate image filepath

Now you are ready to debug. Toolbar: Build>Build Name (VS Express you will now need to manually change
the extension as mentioned previously) and Copy/Paste .gha file into Plugins>Grasshopper>Components

Open Grasshopper and if you were successful (and remembered to create a new GUID) your component will
load in its appropriate place on the Grasshopper ribbon. Notice that you can call your component in all the
usual ways, including via double click and typing in its name. If there is a logic error go back to Visual Studio
and debug.

G u i d e t o c r e a t i n g c u s t o m G r a s s h o p p e r 0 . 6 . X c o m p o n e n t s P a g e | 5

Disassembling Existing Grasshopper Components

At this point you may be wondering what the deal was with downloading Reflector. Well here’s why: Reflector
allows you to “disassemble” existing executables and dll’s to see what the program is actually doing behind the
scenes. I HIGHLY RECOMMEND for you to go File>Open in Reflector for Grasshopper.dll, and each of the
existing component .gha files. An example of how to disassemble files follows:

File>Open> C:\Program Files\Rhinoceros 4.0\Plug-ins\Grasshopper\Components\Curve (select view all files)

Menu Window>CurveComponents>CurveComponents.dll> CurveComponents. ComponentCurve

At this point you can set the DotNET language that you would like to disassemble the program with.

Then with the component highlighted, Tools>Disassemble or click Expand Methods

G u i d e t o c r e a t i n g c u s t o m G r a s s h o p p e r 0 . 6 . X c o m p o n e n t s P a g e | 6

Additional Tips

If you want to speed up the debugging process you can adjust the .gha loading logic via
GrasshopperDeveloperSettings command in Rhino.

You will likely notice once you start looking at David’s components that he often includes two more overrides
that are labeled HelpDescription and Exposure. The defaults of these are sufficient for the novice developer,
but as your knowledge increase you want to know what these do. The HelpDescription override is the help file
that pops up when you right click on a component and press Help. Its default is the component’s Description
string. Exposure controls where on the GUI your component icon will be visible.

If you are using a Visual Studio Express Edition, check out http://wiki.mcneel.com/developer/dotnetplugins

For programming syntax and reference, use http://msdn.microsoft.com/en-us/library/default.aspx

When you are programming it is helpful to access the tooltips (the menu that pops up after you type a dot with
all of the sub members) even after they have disappeared. The Windows shortcut key is Ctrl + Space

Guidance on New Component Ribbon Location

To avoid the inherent clutter of dozens of developers sharing individual components each with unique tab
names, I propose a best practice of storing components on the “Extra” tab. The sub tab name could be specific
to your plugin (ex. “Kangaroo” sub tab) and if your component matches the “Curve” tab better, then you should
place it on that tab. And obviously, if you develop a plugin suite of over 60 components, then you warrant your
own tab. Below is an illustration of my proposal.

This manual would not have been possible without the contributions of David Rutten of Robert McNeel &
Associates. Much of the contents are derived from an email dialogue from the past few months.

Ben Sitler
bsitler@princeton.edu
Princeton University
Princeton, NJ

