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1 Swarms

A long time ago, people discovered the variety of the interesting insect or
animal behaviors in the nature. A 
ock of birds sweeps across the sky. A
group of ants forages for food. A school of �sh swims, turns, 
ees together,
etc.[1]. We call this kind of aggregate motion \swarm behavior." Recently
biologists, and computer scientists in the �eld of \arti�cial life" have studied
how to model biological swarms to understand how such \social animals"
interact, achieve goals, and evolve. Moreover, engineers are increasingly
interested in this kind of swarm behavior since the resulting \swarm intel-
ligence" can be applied in optimization (e.g. in telecommunicate systems)
[2], robotics [3, 4], tra�c patterns in transportation systems, and military
applications [5].

A high-level view of a swarm suggests that the N agents in the swarm
are cooperating to achieve some proposeful behavior and achieve some goal.
This apparent \collective intelligence" seems to emerge from what are often
large groups of relatively simple agents. The agents use simple local rules
to govern their actions and via the interactions of the entire group, the
swarm achieves its objectives. A type of \self-organization" emerges from
the collection of actions of the group.

Swarm intelligence is the emergent collective intelligence of groups of
simple autonomous agents. Here, an autonomous agent is a subsystem that
interacts with its environment, which probably consists of other agents, but
acts relatively independently from all other agents. The autonomous agent
does not follow commands from a leader, or some global plan [6]. For ex-
ample, for a bird to participate in a 
ock, it only adjusts its movements to
coordinate with the movements of its 
ock mates, typically its \neighbors"
that are close to it in the 
ock. A bird in a 
ock simply tries to stay close
to its neighbors, but avoid collisions with them. Each bird does not take
commands from any leader bird since there is no lead bird. Any bird can 
y
in the front, center and back of the swarm. Swarm behavior helps birds take
advantage of several things including protection from predators (especially
for birds in the middle of the 
ock), and searching for food (essentially each
bird is exploiting the eyes of every other bird).

1.1 Biological Basis and Arti�cial Life

Researchers try to examine how collections of animals, such as 
ocks, herds
and schools, move in a way that appears to be orchestrated. A 
ock of
birds moves like a well-choreographed dance troupe. They veer to the left
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in unison, then suddenly they may all dart to the right and swoop down
toward the ground. How can they coordinate their actions so well? In
1987, Reynolds created a \boid" model, which is a distributed behavioral
model, to simulate on a computer the motion of a 
ock of birds [7]. Each
boid is implemented as an independent actor that navigates according to
its own perception of the dynamic environment. A boid must observe the
following rules. First, the \avoidance rule" says that a boid must move away
from boids that are too close, so as to reduce the chance of in-air collisions.
Second, the \copy rule" says a boid must 
y in the general direction that
the 
ock is moving by averaging the other boids' velocities and directions.
Third, the \center rule" says that a boid should minimize exposure to the

ock's exterior by moving toward the perceived center of the 
ock. Flake
[6] added a fourth rule, \view," that indicates that a boid should move
laterally away from any boid the blocks its view. This boid model seems
reasonable if we consider it from another point of view, that of it acting
according to attraction and repulsion between neighbors in a 
ock. The
repulsion relationship results in the avoidance of collisions and attraction
makes the 
ock keep shape, i.e., copying movements of neighbors can be
seen as a kind of attraction. The center rule plays a role in both attraction
and repulsion. The swarm behavior of the simulated 
ock is the result of the
dense interaction of the relatively simple behaviors of the individual boids.

One of the swarm-based robotic implementations of cooperative trans-
port is inspired by cooperative prey retrieval in social insects. A single ant
�nds a prey item which it cannot move alone. The ant tells this to its nest-
mate by direct contact or trail laying. Then a group of ants collectively
carries the large prey back. Although this scenario seems to be well under-
stood in biology, the mechanisms underlying cooperative transport remain
unclear. Roboticists have attempted to model this cooperative transport.
For instance, Kube and Zhang [2] introduce a simulation model including
stagnation recovery with the method of task modeling. The collective be-
havior of their system appears to be very similar to that of real ants.

Resnick [8] designed StarLogo { an object-oriented programming lan-
guage based on Logo, to do a series of microworld simulations. He success-
fully illustrated di�erent self-organization and decentralization patterns in
the slime mold, arti�cial ants, tra�c jams, termites, turtle and frogs and so
on.

Terzopooulos et al. [9] developed arti�cial �shes in a 3D virtual physi-
cal world. They emulate the individual �sh's appearance, locomotion, and
behavior as an autonomous agent situated in its simulated physical domain.
The simulated �sh can learn how to control internal muscles to locomote

2



Literature Overview Yang Liu, Kevin M. Passino

hydrodynamically. They also emulated the complex group behaviors in a
certain physical domain.

Millonas [10] proposed a spatially extended model of swarms in which or-
ganisms move probabilistically between local cells in space, but with weights
dependent on local morphgenetic substances, or morphogens. The mor-
phogens are in turn a�ected by the paths of movements of an organism.
The evolution of morphogens and the corresponding 
ow of the organisms
constitutes the collective behavior of the group.

Learning and evolution are the basic features of living creatures. In
the �eld of arti�cial life, a variety of species adaptation genetic algorithms
are proposed. Sims [11] describes a lifelike system for the evolution and
co-evolution of virtual creatures. These arti�cial creatures compete in phys-
ically simulated 3D environments to seize a common resource. Only the
winners survive and reproduce. Their behavior is limited to physically plau-
sible actions by realistic dynamics, like gravity, friction and collisions. He
structures the genotype by the directed graphs of nodes and connections.
These genotypes can determine the neural systems for controlling muscle
forces and the morphology of these creatures. They simulate co-evolution by
adapting the morphology and behavior mutually during the evolution pro-
cess. They found interesting and diverse strategies and counter-strategies
emerge during the simulation with populations of competing creatures.

1.2 Swarm Robots

Swarm robotics is currently one of the most important application areas for
swarm intelligence. Swarms provide the possibility of enhanced task perfor-
mance, high reliability (fault tolerance), low unit complexity and decreased
cost over traditional robotic systems. They can accomplish some tasks that
would be impossible for a single robot to achieve. Swarm robots can be
applied to many �elds, such as 
exible manufacturing systems, spacecraft,
inspection/maintenance, construction, agriculture, and medicine work [12].

Many di�erent swarm models have been proposed. Beni [4] introduced
the concept of cellular robotics systems, which consists of collections of au-
tonomous, non-synchronized, non-intelligent robots cooperating on a �nite
n-dimensional cellular space under distributed control. Limited commu-
nication exists only between adjacent robots. These robots operate au-
tonomously and cooperate with others to accomplish prede�ned global tasks.

Hackwood and Beni [13] propose a model in which the robots are par-
ticularly simple but act under the in
uence of \signpost robots." These
signposts can modify the internal state of the swarm units as they pass by.
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Under the action of the signposts, the entire swarm acts as a unit to carry out
complex behaviors. Self-organization is realized via a rather general model
whose most restrictive assumption is the cyclic boundary condition. The
model requires that sensing swarm \circulate" in a loop during its sensing
operation.

The behavior-based control strategy put forward by Brooks [14] is quite
well known and it has been applied to collections of simple independent
robots, usually for simple tasks. Other authors have also considered how a
collection of simple robots can be used to solve complex problems. Ueyama
et al.[15] propose a scheme whereby complex robots are organized in tree-
like hierarchies with communication between robots limited to the structure
of the hierarchy.

Mataric [16] describes experiments with a homogeneous population of
robots acting under di�erent communication constraints. The robots either
act in ignorance of one another, are informed by one another, or intelligently
(cooperate) with one another. As inter-robot communication improves, more
and more complex behaviors are possible.

Swarm robots are more than just networks of independent agents, they
are potentially recon�gurable networks of communicating agents capable of
coordinated sensing and interaction with the environment. Considering the
variety of possible designs of groups mobile robots, Dudek et al.[12] present a
swarm-robot taxonomy of the di�erent ways in which such swarm robots can
be characterized. It helps to clarify the strengths, constraints and tradeo�s
of various designs. The dimensions of the taxonomic axes are swarm size,
communication range, topology, bandwidth, swarm recon�gurability, unit
processing ability, and composition. For each dimension, there are some key
sample points. For instance, swarm size includes the cases of single agent,
pairs, �nite sets, and in�nite numbers. Communication ranges include none,
close by neighbors, and \complete" where every agent communicate with ev-
ery other agent. Swarm composition can be homogeneous or heterogeneous
(i.e. with all the same agents or a mix of di�erent agents). We can apply this
swarm taxonomy to the above swarm models. For example, Hackwood and
Beni's model [13] has multiple agents in its swarm, nearby communication
range, broadcast communication topology, free communication bandwidth,
dynamic swarm recon�gurability, heterogeneous composition, and its agent
processing is Turing machine equivalent [12].

As the research on decentralized autonomous robotics systems has de-
veloped, several areas have received increasing attention including modeling
of swarms, agent planning or decision making and resulting group behav-
ior, and the evolution of group behavior. The latter two can be seen as
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part of the branch of distributed arti�cial intelligence since several agents
coordinate or cooperate to make decisions. There are several optimization
methods proposed for the group behavior. Fukuda et al.[17] introduced a
distributed genetic algorithm for distributed planning in a cellular robotics
system. They also proposed a concept of self-recognition for the decision
making and showed the learning and adaptation strategy [18]. There are
also other algorithms proposed.

1.3 Evaluation of Swarm Intelligent System

Although many studies on swarm intelligence have been presented, there
are no general criteria to evaluate a swarm intelligent system's performance.
Fukuda et al.[19] try to make an evaluation based on the 
exibility, which is
essentially a robustness property. They proposed measures of fault tolerance
and local superiority as indices. They compared two swarm intelligent sys-
tems via simulation with respect to these two indices. There is a signi�cant
need for more analytical studies.

2 Stability of Swarms

2.1 Biological Models

In biology, researchers proposed \continuum models" for swarm behav-
ior based on non-local interactions [20]. The model consists of integro-
di�erential advection-di�usion equations, with convolution terms that de-
scribe long range attraction and repulsion. They found that if density de-
pendence in the repulsion term is of a higher order than in the attraction
term, then the swarm has a constant interior density with sharp edges as
observed in biological examples. They did linear stability analysis for the
edges of the swarm.

2.2 Characterizations of Stability

There are several basic principles for swarm intelligence, such as the proxim-
ity, quality, response diversity, adaptability, and stability. Stability is a basic
property of swarms since if it is not present, then it is typically impossible
for the swarm to achieve any other objective. Stability characterizes the
cohesiveness of the swarm as it moves. How do we mathematically de�ne
if swarms are stable? Relative velocity and distance of adjacent members
in a group can be applied as a criteria. Also, no matter whether it is a
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biological or mechanical swarm, there must exist some attractant and repel-
lant pro�les in the environment so that the group can move so as to seek
attractants and avoid repellants. We can analyze the stability of swarm by
observing whether swarms stay cohesive and converge to equilibrium points
of a combined attractant/repellant pro�le.

2.3 Overview of Stability Analysis of Swarms

Stability of swarms is still an open problem. We searched the current litera-
ture and found that there is very little work done in this area. We overview
this work next.

Jin et al.[21] proposed the stability analysis of synchronized distributed
control of 1-D and 2-D swarm structures. They prove that synchronized
swarm structures are stable in the sense of Lyapunov with appropriate
weights in the sum of adjacent errors if the vertical disturbances vary suf-
�ciently more slowly than the response time of the servo systems of the
agents. The convergence under total asynchronous distributed control is still
an open problem. Convergence of simple asynchronous distributed control
can be proven in a way similar to the convergence of discrete Hop�eld neu-
ral network. Beni [22] proposed a su�cient condition for the asynchronous
convergence of a linear swarm to a synchronously achievable con�guration
since a large class of distributed robotic systems self-organizing tasks can be
mapped into recon�gurations of patterns in swarms. The model and stabil-
ity analysis in [21, 22] is, however, quite similar to the model and proof of
stability for the load balancing problem in computer networks [23].
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