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Fig. 2.8 A wiet foam (a) consists of roughly spherical bubbles with

water-laden walls. As the water drains away under gravity, the bubbles
become more polyhedral and the result s a ary foam {b). (Photos:

Burkhard Prause, University of Notre Dame, Indiana.}

arger ones. But as gravity sucks out the liquid from the
walls and the cells become more like flat-sided poly-
hedra, the foam starts to take on some very particular
geometric features. At first sight, it might seem to be a
random mass of polyhedra of all shapes and sizes. At the
end of the nineteenth century, however, Belgian phy-
sicist named Joseph Antoine Ferdinand Plateau
discerned some rules amongst the chaos.

First, the walls between cells are smooth, but not
generally flat—they curve gently one way or another.
This curvature indicates that the pressure of the gas
inside the two adjacent cells is not equal: it is higher on
the concave side of the wall. Smaller cells in a dry foam
are the remnants of small bubbles, which (as Young and
Laplace showed) have a higher internal pressure than

large bubbles; so where the two meet, the walls of the
small cells bulge outwards (you can se¢ this in Fig. 2.8b).

Where three walls meet, there is a junction in which
the liquid film is slightly thicker than in the walls them-
selves (Fig. 2.9). Because the walls are necessarily curved
at these junctions, the Young-laplace relationship
means that the pressure inside them must be lower than
that in the flat walls; as a result, water is squeczed from
the walls into the junction region. The consequence is
that the junctions, called Plateau borders, contain most
of the liquid in the foam.

Where three films meet in a Plateau border, the sur-
face tensions in the films achieve a mechanical balance
only if the walls meet at an angle of 120° (Fig. 2.9a).
Equally, when four films meet, the angles at the junction
would have to be 90° to achieve this balance of forces.
But Plateau noticed a curious thing: he could find no
fourfold junctions in his foams, nor any junctions of
still greater numbers of walls. Three was the limit, and
always with angles close to 1207

The explanation for this requires a careful mathemat-
ical analysis of the various forces acting on the films,
which T won’t delve into. Suffice it to say that if four
bubble walls do meet at a Plateau border, this turns out
to be unstable and will rapidly rearrange to two three-
fold junctions (Fig. 2.9h). So here we have an explana-
tion for why a two-dimensional packing of bubbles
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Fig. 2.9 Bubble walls meet &t Plateau borders, where the walls are
slightly thickened, Three walls will always meet at an angle of 1207 al
equilibrium (a). If, as a foam coarsens, foyur walls happen to come
together at a junctian, they will rapidly rearrange into two threefola
junctions (b).




forms a foam of roughly hexagonal cells—only these
satisfy the criterion that the walls always meet in threes
with a 120° angle between them. Whether or not D’Arcy
Thompson was right to ascribe the origin of the honey-
comb’s design to this effect, he was right about the way
that bubbles pack.

But most foams are three-dimensional, and this means
that Plateau borders along the edges of the polyhedral
cells converge at their vertices. Here Plateau made another
discovery: the number of Plateau borders that meet at a
vertex seems always to be four—no more, no less. And
they meet at an angle of about 109.5° the ‘tetrahedral
angle’: the four borders pointed to the vertices of a tetra-
hedron (Fig. 2.10). Again, this arrangement emerges from
the requirements for mechanical stability of the cell walls.
These geometrical rules govern the structures that all soap
films will form when they meet (Fig. 2.11). They attest to
an underlying regularity in the architecture of foams.
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Fig. 2.10 Plateau borders converge at fourfold vertices, where they
meet at the tetrahedial angle of about 109,57, This is beautifully
llustrated by soap films lormed within a tetrahedral wire frame (see
Appendix 11. {Photo: Michele Emmer, University of Rome 'La Sapienza'))
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Fig. 2.11 The structures taken up by soap films and bubbles heid within fixed boundaries are dictated by Plateau's rules, {Phatos: Michele Emmer)




Looked at more closely, however, Plateau’s rules run
into a problem. While we can understand how each
arises in isolated packings of a few bubbles, we then
have to ask whether it is in fact possible to fill up space
with polyhedra that always conform to the rules. The
simplest approach to the problem is to consider every
cell to be identical in volume (as they are in a mono-
disperse foam), and to try to find a single polyhedral
shape that can be packed together to give a network that
obeys the rules governing borders and vertices. As well
as satisfying these geometric criteria, the cells in this
ideal three-dimensional foam should also minimize
their total surface area. Is there a single, well-defined
way to partition space so as to both satisfy Plateau’s
rules and provide the greatest economy in surface area?
So far, no unique cellular packing of this sort has been
identified.

This problem of cellular packing has a long history. In
the eighteenth century, the English clergyman Stephen
Hales took an inventive experimental approach, by
compressing peas to see what shapes the spheres would
take when flattened together. He claimed that the peas
were pressed into ‘pretty regular Dodecahedra) by
which he apparently meant rhombic dodecahedra
(Fig. 2.12a). These experiments were made widely
known (though without attribution to Hales) by the
French zoologist G.L.L. Buffon in 1753, and for a long
time the rhombic dodecahedron was taken to be the
best solution to the problem of economy. A rigorous
mathematical proof was lacking, however, and in 1887

Fig. 2.12 Candidate cell shapes for a ‘perfect’ foam: (a) the rhombic
dodecahedran; (b) the truncated octahedron promoted by Lord Kelvin;
c) the pentagonal dodecahedron; (d} the beta-tetrakaidecahedran.

Lord Kelvin identified a cell shape that did better ir
terms of minimizing surface area: a 14-sided poly-
hedron (called a tetrakaidekahedron) with six square
and eight hexagonal faces (Fig. 2.12b). This object, alsc
known as a truncated octahedron, will pack together tc
fill space while coming close to satisfying Plateau’s rules
at each vertex there are two 120° angles and one 90
angle, but Kelvin showed that only a slight curvature o
the hexagonal faces is sufficient to adapt the vertices tc
the tetrahedral angle of 109.5°, Kelvin was not able tc
prove, however, that this was the most economical
solution of all possible cellular packings, and no such
proof has followed subsequently. Nevertheless, some
mathematicians (including Hermann Weyl in his
famous book Symmetry) have long suspected thal
Kelvin’s solution cannot be bettered.

D’Arcy Thompson claimed that if a mass of clay pel-
lets is compressed like Hale’s peas, they will form shapes
close to rhombic dodecahedra; but if they are first made
wet, so that they can slide over one another, they show
instead square and hexagonal facets like those of
Kelvin's tetrakaidekahedron. So he was happy to con-
clude that soap bubbles of equal size, which can slide
over one another, will form a froth with Kelvin’s
configuration. All the same, he cautioned that the
solution to the packing problem depended in subtle
ways on the conditions of packing: he described experi-
ments by J.W. Marvin on compression of lead balls,
which apparently formed rhombic dodecahedra if first
stacked like a greengrocer’s oranges in regular hexa-
gonal layers, but irregular polyhedra with an average of
14 sides if poured into the vessel at random.

Moreover, the regular polyhedron (that is, one with
identical faces) that comes closest to satisfying Plateau’s
rules is not the rhombic dodecahedron but the pen-
tagonal dodecahedron, which has 12 pentagonal faces
(Fig. 2.12¢). This object doesn’t stack to fill space exact-
ly, and in addition the angles are slightly wrong—116°
between Taces, 108° between vertices—but it will do the
job with a little distortion. Another candidate for the
cell shape in a monodisperse foam is an irregular
l4-sided polyhedron called a beta-tetrakaidecahedron
(Fig. 2.12d); but even this needs to be distorted to meet
the rules.

So much for the models; what do the cells of real
foams look like? The botanist Edwin Matzke conducted
a detailed study of the shapes of monodisperse foams in
1946, and found that none of the ideal models provides,
by itself, an accurate description of the cellular struc-
ture. For one thing, Matzke's foams were far from




Plate 1 When a liquid is heated
uniformly from below, it will
spontaneously develop a pattern
of hexagonal circulating cells,
Here the cells are made visible by
metal flakes suspended in the
fluid. (Photo: Manuel Velarde,
Universidad Complutense,
Madrid .}

Plate 2 The rainbow colours of a soap film thinning under gravity. As
the liquid in the film gets pulled downwards, the film’s thickness varies
from top to bottom. Interference between light reflected from the front
and back of the film then selecs different wavelengths of reflected light
for different film thicknesses, The film tums silvery and then black before
Emmer, University of Rome ‘La Sapienza'.)
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regular—they contained cells of many different shapes,
50 that the structure could be described only in statis-
tical terms. He observed that about 8% of the cells had
roughly the shape of a pentagonal dodecahedron,
although over half of the faces had five sides. Cells
approximating Kelvin's truncated octahedra were even
rarer—only 10% of the faces were four-sided, and
Matzke found no cells resembling Kelvin's overall. Most
of the cells tended instead to be rather like Marvin’s
squashed lead pellets, averaging about 14 sides each but
with irregular shapes that might be best approximated
by the beta-tetrakaidecahedron (Fig. 2.124). Matzke’s
experiments suggested that the packing problem was
purely academic, since perfectly regular foams are a
Platonic ideal with no relevance to the real world.

But recently, physicists Dennis Weaire and Robert
Phelan at Trinity College, Dublin, have questioned this
conclusion. In 1993 they discovered a new type of cell
shape for regular foams that finally deposed Kelvin’s
solution—after over a hundred years of supremacy—as
the most economical solution to the packing problem.
Their solution is less elegant than Kelvin’s. Rather than a
single cell type with faces that are regular polygons, the
foam described by Weaire and Phelan has a repeat unit
built up from eight cells, six of which have 14 faces and
two of which have 12 (Fig. 2.13). The latter are pen-

I

Fig. 2.13 A better foam? This cellular structure, proposed by Weaire
and Phelan, has a slightly smaller surface area than that made of
Kelvin's cells, for the same enclosed volume. The repeat unit consists of
elght slightly ireqular cells. (Image: Dennis Weaire and Robert Phelan,
Trinity College, Dublin.)
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tagonal dodecahedra, while the former have two hexag-
onal faces and 12 pentagons. But only the hexagonal
faces are regular (with equal sides and angles); the pen-
tagons in these cells have sides of differing lengths and
corners of differing angles. All the same, this unit can be
stacked together to give a regularly repeating foam
structure whose surface area is about 0.3% less than that
of a Kelvin-type structure of the same volume, while
still maintaining Plateau’s rules if the faces are almost
imperceptibly curved.

Having identified this improved solution to the pack-
ing problem, Weaire and Phelan wanted to see if they
could see it in real foams. So they decided to conduct a
survey like Matzke’s. But whereas Matzke had specified
a highly complicated procedure for making mono-
disperse foams by adding bubbles one at a time, Weaire
and Phelan found that they could produce these foams
simply by using the ‘drinking straw’ technique of blow-
ing bubbles underwater in a cylinder of liquid. They
found first of all that the foams produced this way were
not necessarily totally irregular and disordered, like
Matzke’s, but could contain regions in which regular
cells were packed together. In parts of the foam close to
the cylinder walls they often observed cells with square
and hexagonal faces like those proposed by Kelvin
(Fig. 2.144a); but these cell shapes seldom persisted
beyond the first three or four layers. Within the bulk of
the foam, meanwhile, they spotted regions where the
cells had pentagonal and hexagonal faces, fitting togeth-
er into structures very much like the one they had put
forward as an improvement on Kelvin's (Fig. 2.14b,c).
So it seems that after all, foams can be more geo-
metrically precise—and more adept at the economical
filling of space—than has long been believed.

Face to face

The problem of how to fill space with identical poly-
hedral cells, subject to a minimization principle for sur-
face areas, is one that bees face too. The major part of
the honeycomb problem is two-dimensional, because
the cells are just prisms that are uniform along their
length. What matters in this case is the cross-sectional
shape of the cells, and the optimal solution in this
regard is clear: hexagonal cells minimize the cross-
sectional perimeter of the cell walls and so cost the bees
less wax. But in the honeycomb, twe such layers of cells
are placed back to back, and the bees must then find the
best way of marrying the two layers. The problem
becomes three-dimensional, and so more complex, at
the interface of the layers of cells.




BUBBLES

This packing problem is entirely equivalent to that of
filling space with polvhedral cells, except that it is
confined to a single layer. In a real honevcomb each cell
ends in three rhombic (four-sided) faces (Fig. 2.15a),
which together constitute one fragment of the rhombic
dodecahedron (Fig. 2.12a)—this relationship to the
polyhedron seems to have been first identified by
the sixteenth-century German astronomer Johannes
Kepler. Back-to-back cells with these end caps marry
perfectly, and in cross-section the interface has a zigzag
structure (Fig. 2.150). Is this the most economic
solution to the problem?

Réaumur concluded in the eighteenth century that it
was. He considered the case of two arrays of hexagonal
cells meeting such that their end caps consist of three
identical and equal-edged rhombuses, and asked the

~

Fig. 2.14 What does a real dry ‘ideal' foam look like? At its boundaries
are regions containing cells like Kelvin's (a), but deeper inside () are
regions with cells like those of the ‘minimal foam' of Weaire and
Phelan (o). ilmages: Dennis Weaire and Robert Phelan.)

Swiss mathematician Samuel Koenig to find the shape
of the rhombuses that minimized the surface area.
Koenig showed that the angles of each rhombic face
should be about 109.5° and 70.5%, which are those in the
regular rhombic dodecahedron—and also those
observed in real honeycombs. It was this finding that led
the secretary of the French Academy, Fontenelle, to
issue the pronouncement on the divine guidance of bees
quoted on page 17. To reach his solution, Koenig had
had to employ the methods of differential calculus
introduced less than half-a-century previously by Isaac
Newton and Gottfried Wilhelm Leibniz, and it was too
much for Fontenelle to suppose that the bees could
possess this knowledge that surpassed ‘the forces of
common geometry'—for that would surely mean that
‘in the end these Bees would know too much, and their




Fig. 2.15 The ends of a honeycomb's cells are fragments of rhombic
dodecanedra, made up of three thombic faces (a). The two layers of

cells with these end caps marry up with a zigzag cross-section (). Is
this the minimal solution? A smaller surface area is obtained for end

taps that are fragments of Kelvin's truncated octahedra (o).

exceeding glory would be their own ruin® Fvidently the
geometric excellence was that of God, not of mere
creatures.

But in posing the problem, Réaumur had imposed
constraints (the requirement of three identical rhom-
buses) that left doubt as to whether the bees have truly
found the optimal answer. In 1964 the Hungarian
mathematician L. Fejes Toth pondered on the economy
of the honeycomb in a lecture entitled “What the bees
know and what they do not know’. He showed that a
better solution exists in which the cells’ end caps are
more elaborate—a combination of squares and hexa-
gons (Fig. 2.15¢). This structure represents a total saving
of a tiny fraction of a percent of each cell’s surface area.
Just as the rhombic cap is related to the rhombic dodec-
ahedron, so Toth's cell is closely related to the truncated
octahedron (Fig. 2.12b) that Kelvin showed to be more
economical in three dimensions. Téoth emphasized that,
while his was mathematically a superior solution, there
was no guarantee that it was biologically better—for the
bees might have to expend more effort in making the
more elaborate end-caps.

Weaire and Phelan have used their foam-blowing
technique to put Téth's idea to an experimental test.
They looked at the cell structures in a thin foam—iwo
layers of bubbles—constrained between glass plates.
The bubbles adopt hexagonal faces at the interface with
the glass, so that the foam is a precise analogue of the
honeycomb. They found that the interface between
the two layers of bubbles does adopt Toth’s structure
(Fig. 2.16a), which can be identified by the distinctive
pattern made by the junctions of bubbles in projection.
But if Weaire and Phelan thickened the bubble walls by
adding more liquid (creating a wet foam), they found
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Fig. 2.16 Toth's structures can be seen at the interlace of @ double
layer of hexagonal bubbles (3). But if the bubbles contain more liquid in
their walls, the faces at the interface change to thombuses (b), giving a
junction like that in real honeycombs (Fig. 2.15a, b). (Photos: Dennis
Weaire and Robert Phelan.)

something unexpected: as the bubbles become more
rounded, there is a point at which the interface sud-
denly switches to the three-rhombus configuration
found in the real honeycomb (Fig. 2.165). The thicken-
ing of the walls and curving of the bubble sides ap-
parently changes the balance in surface energies so
that this structure becomes more stable instead. So in
thicker-walled honeycombs, maybe the bees do have the
best solution. Do they know more than we thought? [
return to this question at the end of the chapter.

Curved spaces
Cells, starfish and doughnuts

Soap bubbles and foams do not last for ever, and I sup-
pose that is part of their appeal: fragile beauty, gone in a
moment. The collapse of foams is brought about partly
by the drainage of the films, under the influence of grav-
ity and capillary forces, until they become too thin to
resist the slightest disturbance—a vibration or a breath
of air. But in their passing, soap films can treat us to a
wonderful display. Held vertically on a wire frame, a
thinning soap film becomes striated with bands of rain-
bow colours that pass from top to bottom (Plate 2).
Finally the top becomes silvery and then black; and the
blackness, like a premonition of the film’s demise,




Fig. 2.31 The cell's smooth endoplasmic reticulum is a disordered
‘sponge’ of natural membranes. (Photo: Don Fawcett.)

There most certainly are! Membranes with regular
channel structures akin to periodic minimal surfaces
have now been identified in the cells of countless organ-
isms ranging from bacteria to plants to rats. Kare
Larssen, Tomas Landh and colleagues at Lund
University in Sweden have shown that the biological lit-
erature is replete with images of ordered membrane
networks (Fig. 2.32), many of them apparently cor-

responding to periodic minimal surfaces or surfaces of

constant mean curvature. They had not previously been
recognized as such, says Landh, because cell biologists,
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unfamiliar with these mathematical abstractions, had
been unable to interpret what they saw.

The first pictures of such structures were presented in
1965 by Brian Gunning, who observed them in electron
microscope images of plant cells. These are much like
the pictures that one can see through a light micro-
scope—lighter where there is less dense matter and
darker where the density is greater—but because the
images are formed by the scattering of electrons rather
than light, they have a higher resolution: smaller fea-
tures can be seen. (The limit on the size of the objects a
microscope can resolve is set by the wavelength of the
imaging beam, and a beam of electrons typically has a
shorter wavelength than visible light.) The complica-
tion, however, is that these electron micrographs show
projections—two-dimensional ‘shadows” of the three-
dimensional structure. This can make it very hard to
decide exactly what kind of three-dimensional pattern
is being imaged, and in general researchers have to rely
on comparisons between the real images and simulated
images calculated by assuming a particular 3D structure
(Fig. 2.33).

Gunning saw a hexagonal pattern in the micrographs
of leaf cells—the projected image of a regular network
formed from the biological membranes. In 1975 he and
botanist Martin Steer proposed that these networks
were periodic minimal surfaces. In 1980 Larssen and his
co-workers at Lund suggested that some of Gunning's
images corresponded to the D-surface (Plate 3a).
Soon other structures began to come to light in the
organelles—the functional compartments—of many
other cells. They are particularly common in the endo-
plasmic reticulum, but are also found in the membranes

Fig. 2.32 Perindic membrane
structures are commen in living
cells, Many of these appear to be
related to periodic minimal
surfaces: {a) the D-surface in leaf
membranes; (b) the P-surface in
algae; I¢) the G-surface in
lamprey epithelial cells. (Photos:
a, lrom Gunning {1965),
Protoplasma 60, 111; & from
Mclean & Pessoney (1970), /. Celf
Biology 45, 522. All images
kindly provided by Tomas Landh,
Lund University.)




