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BUBBLES

When I arrived here yesterday Uncle William and Aunt Fanny niet me
at the door, Uncle William armed with a vessel of soap and glycerine
prepared for blowing soap bubbles, and a tray with a number of
mathematical figures made of wire. These he dips into the soap mixture
and a film forms or adheres to the wires very beautifully and perfectly
regularly. With some scientific end in view he is studying these films.

Agnes G. King, niece of Lord Kelvin
1887

am quite sure that a fascination with patterns in nature is as old as

civilization. When the Egyptians began to keep bees in clay pipes 5000

years ago, they cannot have failed to notice the astonishing hexagonal
pattern of the honeybee’s dwelling (Fig. 2.1). Charles Darwin declared it
‘absolutely perfect in economising labour and wax) and marvelled at the
bees’ instincts for producing such a masterpiece of engineering.

If you want to fill up a plane space with identical, equal-sided and equal-
angled cells, there are only three choices: triangles, squares or hexagons.
Only these regular polygons can be packed together to fill space without
leaving gaps. Pentagons, for example, will not work, and neither will
octagons (Fig. 2.2). Bees making a pentagonal honeycomb would be con-
stantly leaving gaps, and it is not hard to see why these aberrant bees
would not be very successful in the Darwinian struggle for survival. The
same is true for circular cells.

But why do bees not make square or triangular cells
instead of hexagonal? The ancient Greeks suspected that
the bees possessed ‘a certain geometrical forethought’
by which they deduced that hexagonal cells could hold
more honey; but the Frenchman R.A.E de Réaumur

Fig. 2.2 There ase just three types of reqular polygon (with equal sides
Fig. 2.1 The hexagonal honeycomb of the haney bee was surely one of  and angles] that will tile a plane without leaving gaps: equilateral
the first recognized examples of geometrical pattern in the natural triangles, squares and hexagons. Pentagons will not fit. But, as we will
world. (Photo: Scott Camazine, Pennsylvania State University.) see, nature nevertheless has plenty of uses for fivefold symmetry!




proposed in the eighteenth century that it is the area of
the walls, not the volume of the cavities, that matters. The
total length of the cell walls for hexagonal cells filling a
given area is less than that of square or triangular cells
enclosing the same area. In other words, it takes less
material to make hexagonal walls. It is this drive towards
economy that leads bees to make hexagonal honeycombs.
Why bees should be economy-conscious was not obvious
at that time, however, and Réaumur’s contemporaries
decided that the bees were guided by mathematical prin-
ciples according to ‘divine guidance and command’
Darwin, of course, removed any residual need for the
hand of God in nature’s minutiae: he showed that com-
petition and natural selection are the principles that
favour organisms who minimize their metabolic costs.

End of story? Hardly. For this was just the kind of
Darwinian fable that made D’Arcy Thompson reach for
his hammer.

Water’s skin

It sounds very neat, but when you start to think about
what this explanation requires, it gets uncomfortably
elaborate. We must assume that bees and their ancestors
have tried out just about every honeycomb pattern a
tiler could imagine, before gradually conceding that,
yes, hexagons really did leave you less tired and more
able to go out foraging. And then they would have had
to acquire some kind of sophisticated instinct that
allowed them to construct perfect hexagons without the
assistance of set-squares, protractors, compasses Or any
trigonometric know-how.

Why accept this concoction of untested suppositions,
asked Thompson, when one could see quite clearly that

Fig. 2.3 A bubble raft of equal-sized bubbles adopts the hexagonal
pattemn of a honeycomb. Coincidence? (Photo: B.R. Miller)
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the hexagonal honeycomb was an inevitable result of
purely physical forces? For everyone knows that a layer
of bubbles packs together in just this hexagonal
arrangement (Fig. 2.3). If the wax of the comb is made
soft enough by the body heat of the bees, suggested
Thompson, then it is reasonable to think of the com-
partments as bubbles surrounded by a sluggish fluid,
and so they will be pulled into a perfectly hexagonal
array by the same forces of surface tension that organize
bubbles into hexagonally packed rafts. In other words,
the pattern would form spontaneously, without any
great skill on the part of the bees and without the
guiding hand of natural selection.

That all sounds plausible enough, perhaps, but it
doesn’t really explain the hexagonal pattern in any
fundamental way—it simply says that the honeycomb is
like a bubble-raft, and bubble-rafts make hexagonal
arrays. Why hexagons, though? If cellular packings like
bubble-rafts and honeycombs really are the product of
blind physical forces, why should there be any require-
ment of equal sides, or of identical shapes, at allz Why
not a crazy-paving mosaic of random polygons? At this
point we are going to need to know a little more about
what a bubble really is, and what controls its shape.

Bubbles are structures made from liquids. We don’t
often think of liquids as having characteristic shapes—a
liquid is fluid, it takes on the shape of the vessel that
contains it. But liquids most certainly can have shapes
of their own, though these are acutely sensitive to forces
such as gravity. In a mist, tiny droplets of water small
enough to be buoyed against gravity’s tug by the buffet-
ing of air molecules take on the form of near-perfect
spheres. Raindrops too take this shape, slightly
modified by the frictional forces of their passage
through the air and by the urgent pull of gravity.

A spherical droplet provides an illustration of that
counter-intuitive aspect of symmetry mentioned in the
first chapter: it is generally greatest in the presence of
extreme randomness. Unlike crystals, in which the
atoms are stacked into regular arrays like eggs in an
egghox, liquids have no ordering of their constituent
particles over long distances. The position of one
molecule of water bears no relation to the position of
another a few millionths of a millimetre away—every-
thing is a jumble. This means that the liquid looks the
same in all directions—it is isotropic, and that is
reflected in the ‘perfect’ spherical symmetry of a
droplet. But there is something more to the spherical
shape, because it is robust: a droplet returns to this
shape if momentarily deformed. In other words, there




is some factor that selects a spherical form. That factor
is surface tension.

Liquids and solids are held together by forces of attrac-
tion between the constituent molecules, which prevent
them from flying apart into vapour. These forces can
take many forms. In solids like diamond, strong chem-
ical bonds bind the atoms into structures that can be dis-
rupted only by very energetic processes. In a molecular
liquid like water, these same strong bonds hold together
two atoms of hydrogen with one of oxygen in each water
molecule; but the molecules themselves are bound only
by much weaker forces, which give the liquid some cohe-
sion even though the individual molecules are free to
move around. These forces of attraction are electrical in
origin: regions of the water molecules that bear a slight
positive charge (the hydrogen atoms) are electrically
attracted to regions on other molecules with a slight neg-
ative charge (the oxygen atoms).

Deep within the bulk of the water, a molecule feels
attractive forces from all directions. But molecules at
the surface are attracted only by the molecules below it,
since above is only air (and very diffuse water vapour).
There is, therefore, a net inward force on the surface
molecules, which we call surface tension. Since the
attractive forces have the effect of lowering a molecule’s
energy (stabilizing the molecule), the surface molecules
are more energetic than those deep in the bulk. So there
is an excess energy at the surface. Surface tension and
surface excess energy are two equivalent manifestations
of the fact that surfaces are less stable than the interior
of a substance. This means that surfaces cost energy.

As all physical systems like to reach their most energet-
ically stable state (that is, their equilibrium state—see Box
2.1), they tend to minimize the area of their surfaces. For
a mass of a substance with a certain volume, the shape
that has the smallest surface area is a sphere. So a droplet
of water forms a sphere to minimize its surface excess
energy. It is a statement of the same thing to say that sur-
face tension pulls at the surface of the droplet equally
from all directions, so that it acquires spherical symmetry.

[ might point out here that surface tension can play a
crucial role in determining the forms of solid objects
too, in particular those of crystals. Crystals grow by
adding atoms to those already packed into regular
arrays; but there are several alternatives for where the
newly added atoms might sit, and the positioning of
these determines the shape of the facetted object. Is it
better to add atoms onto the face of an existing layer, or
to add them on at the edges of the laver? In other words,
which face of a facetted crystal will grow tfastest?

Whereas in a liquid droplet the surface tension is the
same in all directions, the different faces of a crystal
have different surface tensions (because the arrange-
ment of atoms is different on each). The face that grows
the fastest will often be that with the greatest surface
tension. These considerations determine whether, for
example, a crystal like rock salt (sodium chloride) will
grow as cubes or as octahedra. Either can be generated
from the stacking arrangement of sodium and chlorine
atoms, but the cubic shape is selected because of the way
that certain facets grow faster than others.

Surface tension controls the shapes that droplets
adopt when they sit on surfaces, If a droplet spreads, it
increases its surface area and thus its surface excess
energy; but on the other hand, it covers the surface
below, which also has a surface excess energy. If the total
surface excess energy is lower for a fully liquid-covered
surface, the droplet will spread into a liquid film; if not,
it remains a glistening bead (Fig. 2.4).

Thus, it is not hard to see how surface tension produces
the spherical form of liquid droplets. Perhaps more sur-
prisingly, it can also be responsible for regular patterns.
In Fig. 2.5a | show a string of pearl-like beads of fly-
catching glue attached to the thread of a spider’s web. The
spider has not painstakingly placed all of these beads at
regular intervals along the thread; they have formed
spontaneously in a regular pattern through the action of
surface tension. A thin, cylindrical column of liquid like
the coating of glue on a spider’s thread is unstable in the
face of tiny disturbances: if the column develops a slight
wavy unevenness (Fig. 2.5b), surface tension acts to
accentuate the convex curving faces, pulling each undula-
tion into a roughly spherical droplet. This ‘pearling’

Fig. 2.4 Water draplets will not spread on the waxy surface of a leaf,
but instead form an array of beads. {Photo: Christoph Burki, Tony Stone
Images.)




phenomenon is called the Rayleigh instability, after Lord
Rayleigh who studied it at the end of the nineteenth cen-
tury. Although the instability acts for perturbations of all
sizes, there is a certain wavelength of undulation that is
the most unstable, and this determines the size and sepa-
ration of the resulting string of pearl-like droplets. The
Rayleigh instability also acts on a thin columnar jet of
water, breaking it up into droplets (Fig. 2.5¢).
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Fig. 2.5 A coating of glue on the threads of a spider’s web breaks up
spontanesusly into a string of pearl-like beads (a). This beading process,
called the Rayleigh instability, is a fundamental property of a namow
eylindrical column of liquid, and it selects a certain wavelength (b). It
can be <een also in the break-up of a narrow jet of water (] (From
Titton 1988,
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We will find throughout this book that pattern-form-
ing processes are often initiated by abrupt instabilities.
Generally an instability sets in suddenly when some
critical parameter is surpassed. For instance, a person
on a bicycle is potentially unstable to falling over (with
an equal probability of tipping to the left or the right),
but this instability sets in only when the speed falls
below a certain threshold. Two common aspects of pat-
tern-forming instabilities are that they involve symme-
try-breaking (in the present case, the liquid film is ini-
tially uniform (symmetric) along the thread’s axis, but
the instability breaks this symmetry) and that they have
a characteristic wavelength, so that the features of the
pattern have a specific size.

Balloon games
A bubble seems to defy the exigencies of surface tension.
It is spherical, sure enough—but what a surface area!
The liquid is stretched into a thin film with a surface
area far, far greater that that of a spherical droplet with
the same volume of liquid. What has happened?
Everyone knows that, while it is well-nigh impossible
to blow bubbles from pure water, they can be made in
abundance from water to which a little soap or deter-
gent has been added. Soaps contain molecules called
surfactants, which have a tendency to migrate from the
bulk of the liquid to the surface, where their presence
greatly reduces the surface tension. This means that sur-
faces cost less, and a larger surface area can be sustained.
Notice that, although our intuition tells us that bubbles
have a ‘stronger skin’ than pure water, they can exist at
all only because their surface tension is lower.

[
Box 2.1: Energy and equilibrium
Energy is a term that is put to many uses, but in science its
meaning is precise: a system's energy is its capadity for doing
mechanical work, for moving objects against forces. Every
process—every movement, every change—in the real world
involves a conversion of energy from ane form to another. My
muscle movements change chemical energy to kinetic energy
(the energy of matter in motion), and also to heat. A light bulb
changes electrical energy into heat and light energy.

Just about every energy conversion process that we
encounter in everyday life produces some quantity of heat,
which for our purpases is often ‘wasted” energy (I don't need
the heat from my ceiling light). With this in mind, there is a
maximum amount of useful work that can be extracted from

any system or process, which is less than the total amount of
energy converted—some is always squandered. This maxi-
mum amount of extractable work is called the free energy. The
direction of spontaneous change is always that which results in
a decrease in free energy. At equilibrium, the free energy is
minimized and no further change takes place.

| shall say more about these concepts, which underpin the
discipline of thermodynamics, in the next chapter. For now, you
might like simply to imagine processes of change as being like ‘
a ball rolling down a hill—this entails the lowering of the
ball/hill system’s free energy. At equilibrium, the ball comes to
rest in 3 valley at the foot of the hill—a static, unchanging
state.




Surfactants are molecules that have a double nature:
part of them is soluble in water, and part is not. In soaps
the surfactants are salts of fatty acids, which have a com-
pact, negatively charged ‘head group’ attached to a long,
fatty tail (Fig. 2.6). The head group can interact strong-
ly with the electrical charges on water molecules, and so
is water-soluble. The tails do not interact strongly with
water at all, although they do have an affinity for oily
hydrocarbon liquids and greases, whose chemical struc-
ture resembles theirs. Molecules with this dual nature
are called amphiphiles (‘liking both’); the term sur-
factant (a condensation of ‘surface-active agent’) ori-
ginated in the detergent industry and is often now syn-
onymous with amphiphile, although in fact it has
the rather more general meaning of a molecule that
mediates surface interactions.

Although soap surfactants will dissolve in water, they
prefer to position themselves at the water surface, where
the water-insoluble tails can poke above the surface
while the water-soluble heads remain in solution
(Fig. 2.6). Surfactants will therefore form a film, just
one molecule thick, at the surface of water. Because the
surface layer of ‘unsatisfied” water molecules becomes
replaced with a layer of fatty tails that didn’t want to be

Soap
molecules

Fig. 2.6 The surface tension of the liquid in a soap bubble’s skin is
lowered by the presence of the soap molecules at the surface. These
molecules, members of a dlass called surfactants, have a water-soluble
head and a waterinsoluble tail, which pokes out from the water
surface.

in the water anyway, this film lowers the surface tension.

When you blow a bubble from a soap film, the hollow
sphere is filled with air. The pressure inside the bubble is
greater than that outside, by an amount that is pro-
portional to the inverse of the bubble’s radius: the
smaller the bubble, the greater the pressure inside.
Thomas Young and Pierre Laplace independently estab-
lished this relationship in 1805. A bubble’s size is deter-
mined by a balance between the force of surface tension,
which acts to shrink the bubble and decrease its surface
area, and the internal pressure, which opposes shrink-
age by increasing as the bubble gets smaller. The spheri-
cal form, meanwhile, is a consequence of the fact that,
of all shapes that can enclose a given volume of space,
the sphere has the smallest surface area (and thus the
smallest surface excess energy). Mathematically, it is
called a minimal surface, about whose properties I shall
have more to say later.

This minimization principle determines the shapes of
all soap films: when confined between boundaries, the
film adopts the shape that has the smallest surface area.
Soap films stretched between wire frames take on ele-
gant, smoothly curved shapes that have inspired archi-
tects such as the German Frei Otto. From the 1950s,
Otto designed lightweight membrane structures in
which sheets of translucent material form tent-like
shapes whose curvature is calculated to minimize sur-
face area (Fig. 2.7a). These structures experience almost
exclusively tensile, rather than compressive, stresses—
just as a soap film is moulded by surface tension. Otto
made use of soap films draped across wire frames
(Fig. 2.7b) to plan the curves of his buildings: these
models provide an instant experimental solution to the
mathematical problem of how to connect specified
boundaries with the minimum of material.

A good head

When bubbles are packed together, the result is a foam.
Foams are amongst nature’s most complicated architec-
tural structures, and it is safe to say that, while they have
been studied for centuries, they are still not fully under-
stood. Nature has learned to make use of foams—the
spittle bug, for instance, blows a foamy froth to obscure
its larvae on leaves, hiding them from predators. They
are of great technological value too: foams are used to
fight fires, by smothering them with a light but semi-
rigid blanket. They will also damp the power of an
explosion, absorbing most of its energy as the bubbles
are converted to droplets, which then evaporate. Foams
blown in plastics are used as insulation and packaging,




while watery foams are used in mineral extraction and
metal foams promise strong, lightweight engineering
materials. And considerable effort goes into the creation
of a good head of beer, although the value is purely
aesthetic. So there are plenty of practical as well as acad-
emic reasons for wishing to understand the factors that
govern foam structure.

But one difficulty is that we're shooting at a moving
target. The structure of a foam depends on when you
look. A freshly formed foam in water (an aqueous
foam), such as that on a newly poured glass of beer, is
heavy with water (it is called a wet foam), and the bub-

Fig. 2.7 The elegant area-
minimizing shapes of soap films
have inspired architets such as
Frei Otto, whose design for the
Olympic Swimming Arena in
Munich is shown here (a). Otto
used soap films stretched across
wire frames to plan the curves of
his membrane structures (h).
{Photo {b): Michele Emmer,
University of Rome ‘La Sapienza’.)

bles are mostly spherical (Fig. 2.84a). Later the walls
become thinner and the bubbles take on a polyhedral
shape with more or less flat faces (Fig. 2.8b). This is
called a dry foam, as much of the liquid has drained
from the walls between bubbles. Typically, a foam then
begins a process of coarsening, whereby bubbles merge
so that their average size increases with time. Eventually,
coarsening and evaporation of the liquid leads to
collapse.

A wet foam is rather like a box of marbles of different
sizes—the spherical bubbles are jumbled together hap-
hazardly, with smaller ones filling the spaces between




